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Electrochemistry
Lecture 2

Voltammetry

CHE 729 

Dr. Wujian Miao

Reference Books

Electrochemical Cell
 Working electrode:

place where redox 
occurs, surface area 
few mm2 to limit 
current flow.

 Reference electrode:
constant potential 
reference

 Counter (Auxiliary) 
electrode: inert 
material, plays no part 
in redox but completes 
circuit

•Supporting electrolyte:
alkali metal salt does not 
react with electrodes but 
has conductivity
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Electrochemical Instrumentation

Voltammetry
 Electrochemistry techniques based on 

current (i) measurement as function of 
voltage (Eappl)

 Voltammetry — Usually when the working 
electrode is solid, e.g., Pt, Au, GC.

 Polarograph — A special term used for the 
voltammetry carried out with a (liquid) 
MURCURY electrode. 

 Voltammogram — The plot of the electrode 
current as a function of potential.

Linear sweep voltammetry
The potential is varied linearly with time with

sweep rates v ranging from 10 mV/s to about
1000 V/s with conventional electrodes and up to
106 V/s with ultramicroelectrodes (UMEs).

 It is customary to record the current as a
function of potential, which is equivalent to
recording current versus time.

Linear sweep voltammetry, linear scan
voltammetry (LSV), or linear potential sweep
chronoamperometry.
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X = 0

(Ox + ne  Red) (reversible)

x = ∞ (“bulk”)

x = 0

Linear Sweep/Scan Voltammetry
Peak-shaped i~E profile

For A + e = A- reversible reaction, E0(A/A-) = E0

(1) E >> E0, i ~ 0

(2) E = E0 + dE, i >> 0,  increases

(3) E = E0, i >> 0, [A] = [A-] =[A*]/2

(4) E = E0 - 28.5 mV, i  maximum, [A]x =0 ~ 0.25[A*]

(5) E << E0, i >> 0, decreases, as the depletion effect

DigiSim demonstration
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Cyclic Voltammetry （CV）

DigiSim demonstration

Potential: E(t) = Ei - t (V), 0 < t  

E(t) = Ei - 2 + t (V), t > 

CV is not an ideal method for quantitative evaluation of
system properties. It is powerful in qualitative and semi-
quantitative reaction behavior.

Cyclic Voltammetry- i vs time

DigiSim demonstration

NERNSTIAN (REVERSIBLE) SYSTEMS

Semi-infinite linear diffusion, only O exist initially

LSV: potential changes linearly at a sweep rate of v (\//s) 
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Mass Transfer/Transport
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If use short times ( < 10 s) and don’t stir (quiescent), 

then itotal = id + im

Nernst-Planck Equation
(governing the mass transport to an electrode)
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Diffusion Migration Convection

Ji(x) = flux of species i at distance x from electrode (mole cm-2 s-1)
Di = diffusion coefficient (cm2/s)
Ci(x)/x = concentration gradient at distance x from electrode
(x)/x = potential gradient at distance x from electrode
(x) = velocity at which species i moves (cm/s)

“-”: flux direction opposites the concentration gradient change
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If We Use High Concentration of Good 
Electrolyte in Quiescent Solution...

Nernst-Planck Equation reduces to...

Fick’s First Law

• Flux of substance is proportional to 
its concentration gradient:

i.e., flux  concentration gradient
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LSV Reversible System

( ( / ) )nF RT 

 ( ) is a pure number at any given point

and can be solved  .numerica

where t

lly

 

After the Laplace transformation and a series of 
mathematical treatments of the diffusion equations: 

𝜒 [“kai”]

Excel Calculation of t

0.446295

My Excel
calculation
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Cyclic Voltammetry

Cyclic Voltammograms 
for a Reversible Reaction
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Diffusion Controlled 
Reversible Process 

p

For electrode adsorption process

                 i v

Peak separation potentials, although close to 57 
mV, are slightly a function of switching potentials.

Reversibility of Electrochemical System Can 
be Changed via the Change of Scan Rate

At small v (or long times),
systems may yield reversible
waves, while at large v (or
short times), irreversible
behavior is observed.

/ lamda

f = nF/RT
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0

0

Electron Transfer Rate 

   , ,p p

k

k E i  

Totally Irreversible System

(NO Reversal Peak)

CV Applications in Diagnosing 
Chemical Reaction Mechanisms

EC Reaction (Electron Transfer followed by A Chemical Reaction
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EC Reaction: Scan Rate Dependent

(a) At Fast Scan Rate (b) At Slow scan Rate

ECE Process

(a) S is more difficult to reduce 
than O (i.e., E0’S < E0’O)

(b) S is easier to reduce 
than O (i.e., E0’S > E0’O)

OR ST

TS

OR

(ST)

TS

(2nd ST)

Multi-step Systems

 O + n1e R1 (E1
0)

R1 + n2e R2 (E2
0)

 E0 = E2
0 - E1

0

E0: (a) -180 mV; (b) -90 mV; 
(c) 0 mV; (d) 180 mV.

0 (2 / ) ln 2 36E RT F mV   

The CV looks the same 
as one electron-transfer 
process.
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Ohmic Potential, IR Drop

• Potential change (drop) due to electrochemical 
solution resistance

• Eir = IR
I—current of the electrochemical cell,
R—resistance of the electrolyte solution.

• Ecell = Ecathode-Eanode- IR 

• Question: In electrochemical study, an inert 
electrolyte is always added to the analyte 
solution. Why?

A 
A + e  = B

R = 0
R = 10 Ohm

Ep = 58 mV
Ep = 100 mV

cA =1 mM
50 mV/s
Area = 1 cm2

Faradaic and Nonfaradaic Processes

Faradaic
• Charges or electrons are transferred 

across the electrode|electrolyte interface 
as a result of electrochemical reactions

• Governed by Faraday’s law

A

A

A

   where  = # of e transfered

                             = Faraday constant (96, 485 C/mol)

                             = # of moles of electroactive species

Q nFN n

F

N

dNdQ
i nF

dt dt


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Nonfaradaic Process
• Charges associated with movement of 

electrolyte ions, reorientation of solvent 
dipoles, adsorption/desorption of species, 
etc. at the electrode|electrolyte
interface.

• Changes with changing potential and 
solution composition

• Charges do not cross the interface but 
external currents can still flow

• Regarded as “background current”

Nonfaradaic Processes and the nature of 
electrode|electrolyte interface; the Double layer

• Electrons transferred at electrode surface 
by redox reactions occur at liquid/solid 
interface (heterogeneous)

• (1) A compact inner layer (d0  d1)
• (2) a diffuse layer (d1 –d2)
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Charging current ic

10-40 F/cm2

Potential dependent
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Equivalent Circuits of Electrochemical Cell 

CSCE >> Cd

RC Circuit-Voltage Ramp (Potential Sweep)
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Cyclic Voltammetry

v = dE/t
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small at fast  and low 

 LOD of CV ~ 10 -10  M

i
i v
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Itotal

How do we eliminate the 
charging current so that 

electrochemical techniques could 
be used in quantifying low 

concentrations of redox species? 

(Pulse Voltammetry)

RC Circuit-Potential Step

RsCd time constant
in s

I = 5% (E/Rs) at t = 3
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A is reduced to A- at potential E2

(A)

(A-)

This kind of experiment is called 
chronoamperometry, because current 

is recorded as a function of time.
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Cottrell Equation
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Curves 1, 2, 3, Co(0, t) not 0
-not diffusion controlled
(electrode reaction-controlled)
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Sampled Current Voltammetry
(Normal Pulse Voltammetry)

Eliminating ic: Potential Step/Pulse Voltammetry

(LOD~10-8 M)

if

P
o

te
n

tia
l E

Time

E

t


sample point

ic

c s d c
s

*
1/2Ox Ox

f f

c

When applying :

exp( / )

( )  

at ,  0,  so SNR

t

E

E
i t R C i e

R

nFAD C
i t i t

t

i











   

  

 

Staircase Voltammetry

Normal Pulse Voltammetry
Differential Pulse Voltammetry

Additive Cyclic Square Wave Voltammetry (ACSWV) 

fa
ci

fc
ci

fa
c c

fc
c c

ra
c c

rc
c c

: forward  

: forward  

: reverse  

: reverse  

i anodic i

i cathodic i

i anodic i

i cathodic i

F
ci

R
ci

fa fc
c c

r

F
c

R
c

F R
c

a rc
c c

c

c c

 additive 

0

i i

i i

To

i

i

i i

tal I

I











 

j j'

2H+1

4H+1



49

50

51



18

Pulse Voltammetric Techniques 

• All pulse techniques are based on the difference 
in the rate of the decay of the charging and the 
faradaic currents following a potential step (or 
"pulse").

• The rate of decay: ich much faster than if.-- ich is 
negligible at a time of 5RsCd (time constant, ~µs 
to ms) after the potential step. 

• The sampled i consists solely of the faradaic 
current.

*

ch fexp( );  (  .)o

s s d

nFA DCE t
i i Cottrell Eq

R R C t
 

  

Important parameters 

Pulse amplitude: the height of the potential 
pulse. This may or may not be constant 
depending upon the technique. 

Pulse width: the duration of the potential pulse. 

Sample period: the time at the end of the pulse 
during which the current is measured. 
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Staircase 
Polarography/Voltammetry

Digital potentiostats use a staircase wave form as 
an approximation to a linear wave form. This 
approximation is only valid when E is small (< 
=0.26 mV) and analog current integration filtering 
is used.

Normal Pulse 
Polarography/Voltammetry
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Differential Pulse Voltammetry (DPV)
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Square Wave Voltammetry (SWV)

Peak Current:

ଵିఙ

ଵାఙ
=1 for large pulse amplitudes

Charging current (smaller more than an order of magnitude 
than that of NPV) with LOD 10 nM.

C60 reductions
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Square Wave Voltammetry (SWV)
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SWV Response
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Comparison between SWV and CV

• Low electrochemical 
background.

• Much low detection 
limit.

• Much less distortion 
of voltammogram-
easy to fit theoretical 
data.

• Better for evaluating 
quantitative 
parameters.

• More intuitively in 
chemical terms for most 
practitioners.

• Reversal of CV covers 
a large span of E—
more readily highlights 
linkages b/w processes 
occurring at widely 
separated potentials.

• Wider range of time 
scales.

SWV Strengths CV Strengths

Applications of Voltammetry

• Dopamine detection 
in mice brains

• ……

• Au or Si NPs redox 
behavior

• ……

Anodic Striping Voltammetry (ASV)

Principle of anodic stripping. (a) Preelectrolysis at Ed; stirred solution, 
(b) Rest period; stirrer off. (c) Anodic scan. 
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ASV-Electrode Dependence

HMDE

Pyrolytic graphite

Unpolished GC

Polished GC

Sensitivity and Limit Detection 
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