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ABSTRACT 
The ultimate goal of the prediction of Sea Surface Temperature (SST) from satellite data is to attain an accuracy of 0.3°K 
or better when compared to floating or drifting buoys located around the globe. Current daytime SST algorithms are able 
to routinely achieve an accuracy of 0.5°K for satellite zenith angles up to 53°. The full scan swath of VIIRS (Visible 
Infrared Imaging Radiometer Suite) contains satellite zenith angles up to 70°, so that successful retrieval of SST from 
VIIRS  at these higher satellite zenith angles would greatly increase global coverage. However, the accuracy of the SST 
algorithms steadily degrades to nearly 0.7°K as the satellite zenith angle reaches its upper limit, due mostly to the effects 
of increased atmospheric path length. Both MCSST (Multiple-Channel) and NLSST (Non-Linear) algorithms were 
evaluated using a global data set of in-situ buoy and satellite brightness temperatures, in order to determine the impacts 
of satellite zenith angle on accuracy. Results of our analysis showed how accuracy in SST retrievals is impacted by the 
aggressiveness of the pre-filtering of buoy matchup data, and illustrated the importance of fully exploiting the 
information contained in the first guess temperature field used in the NLSST algorithm.  Preliminary results suggested 
that SST retrievals could be obtained using the full satellite swath with a 30% improvement in accuracy at large satellite 
zenith angles and that a fairly aggressive pre-filtering scheme could help attain the desired accuracy of  0.3°K or better 
using over 75% of the buoy data. 
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INTRODUCTION 
 

The ultimate goal of the prediction of Sea Surface Temperature (SST) from satellite data is to attain an accuracy of 0.3°K 
or better when compared to floating or drifting buoys located around the globe. Current daytime SST algorithms are able 
to routinely achieve an accuracy of 0.5°K for satellite zenith angles up to 53°. The full scan swath of VIIRS (Visible 
Infrared Imaging Radiometer Suite) contains satellite zenith angles up to 70°, so that successful retrieval of SST from 
VIIRS  at these higher satellite zenith angles would greatly increase global coverage. However, the accuracy of the best 
SST algorithm steadily degrades to nearly 0.7°K as the satellite zenith angle reaches its upper limit, due mostly to the 
effects of increased atmospheric path length. 
 
Ideally, the goal of  0.3°K accuracy for angles up to 70° is to be achieved by using only data retrieved from satellites 
such as VIIRS. Historically, the MCSST algorithm was derived with this approach in mind [1], where the coefficient of 
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the ∆T= T11-T12 term is known in the literature as Gamma. However, the use of either climatology or first guess 
temperature field, Tfield, is invoked by Walton [1], to express Gamma as a linear function of surface temperature: Gamma 
= Constant*Tfield. This is justified by experimental data gathered by Walton, who shows that its incorporation into 
MCSST to accentuate the linear dependence of Gamma on surface temperature, known as NLSST, results in better 
accuracy. This slight improvement, however, also results in the mingling of both Celsius and Kelvin temperatures into 
the NLSST algorithm. Previous VIIRS SST algorithm studies show that Tfield should be in Celsius rather than Kelvin for 
best accuracy in the daytime NLSST, while the reverse is true for nighttime NLSST.  
 
Recently, Cayula and May [2] revisited this problematic inconsistency in the choice of units by investigating the effect of 
adding an offset from 0° to 300° to Tfield in both the daytime and nighttime NLSST. This new version, coined the 
expanded NLSST, shows a slightly better accuracy with offsets of 16.2° and 43.3° for daytime and nighttime expanded 
NLSST, respectively.  
 
The use of Tfield by Walton [1] to characterize the Gamma coefficient was in effect equivalent to using it as a predictor. 
However, the full information provided by Tfield is somewhat tamed by the fact that it is a multiplier to another predictor, 
the ∆T term, which influences their synergy as a combined predictor. We were therefore motivated to investigate the use 
of Tfield as an additional, separate predictor in an effort to extract the maximum amount of information it contains with an 
eye to improving the accuracy of SST predictions up to 53° Sun zenith angles, as well as exploring the full swath up to 
70°. Only the MCSST and NLSST daytime algorithms will be addressed here. 
  
After first writing out the equations for MCSST, NLSST and TfieldSST, the SST algorithm presented here that includes 
Tfield as a separate predictor, our approach is guided visually through gradual attempts to increase the agreement between 
scatterplots involving buoy data, Tbuoy-T11 versus ∆T= T11-T12, and scatterplots involving SST predictions, SST-T11 
versus ∆T= T11-T12.  Here, Tbuoy represents temperatures in Kelvin units recorded at buoy locations around the globe, 
while SST are predictions from a particular SST algorithm and are also in Kelvin units. Three characterizations of Tfield 
are used, differing in their spatial resolution, in order to assess the associated change in accuracy generated by 
TfieldSST. Analysis of relationships between the regression coefficients is performed, resulting in a satisfying and 
intuitive representation of the TfieldSST algorithm in terms of SSTMC and Tfield . 
              
 

RESULTS 
 
We begin by first presenting the equations for MCSST, NLSST and TfieldSST in that sequence in order to define the 
notation and conventions for the terminology used in this paper: 
 

( ) ( ) MCMCMCMC
MC cTTScTTcTcSST 41211312112111 −−+−+=  

( ) ( ) NLNL
field

NLNL
NL cTTScTTTcTcSST 41211312112111 −−+−+=  

( ) ( ) field
TfieldTfieldTfieldTfieldTfield

Tfield TccTTScTTcTcSST 541211312112111 +−−+−+=  

where 1sec −= zenithS θ  . Note the negative sign in front of the c4 coefficients, in order to be able to only have positive 
values in coefficient tables to be presented later.  
 
A buoy data set for the month of June 2012 created by NAVOCEANO [2] was used to produce all of the results 
presented here. The resulting regression coefficients for the MCSST algorithm when the buoy and SST prediction 
temperatures are in °Celsius were as follows: 
 

9.274282.1475.2009.1 4321 ==== MCMCMCMC cccc  
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while, when the buoy and SST prediction temperatures are in °Kelvin (= °Celsius + 273.15°): 
 

75.1282.1475.2009.1 4321 ==== MCMCMCMC cccc  
 
Note that only the value of MCc4 is affected when comparing MCSST predictions against different buoy temperature 
scales. Subtracting T11 from both sides of this last equation, the MCSST algorithm can be rewritten as: 
 

( ) ( ) ( ) MCMCMCMC
MC cTTScTTcTcTSST 4121131211211111 1 −−+−+−=−  

or, in a form suitable for scatterplot analysis: 
 

( )( ) YoffsetTTSccTSST MCMC
MC +−+=− 12113211  

 
where ( ) MCMC cTcYoffset 4111 1 −−=  is the narrow range of vertical intercepts when T11-T12 is equal to 0.0, since it depends 
on T11. It is narrow because its T11 coefficient in our case is 0.009. As will be seen, the value of this offset is not as 
important as are the potential clues that can be gathered from comparing the shape and structure of the buoy data and 
SST predictions scatterplots. Side-by-side comparison should reveal the similarities and differences between the buoy 
data and SST predictions, as well as suggest an approach to improve the accuracy of SST algorithms. Figure 1 displays 
the challenge of SST predictions of sea surface temperature. The filtering parameters used are shown in the upper left 
and the buoy data scatterplot, Tbuoy-T11 versus T11-T12 in the top middle. The lower plots show the scatterplots predicted 
by MCSST and NLSST, from left to right. 

 
Figure 1. Visual comparison between scatterplots involving buoy data and SST predictions for Sun zenith angles up to 53°. 
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The most striking visual differences occur when comparing the buoy data scatterplot with the MCSST scatterplot on the 
bottom left. The “pinch effect” and the divergence of the separate 10° zenith bands can be identified with the form of the 
MCSST equation. The main discrepancy appears to be the absence of “scatter” when compared to the buoy data 
scatterplot. 
 
Interestingly, the inclusion of Tfield in the NLSST equation as part of the second term somehow introduced a slight 
amount of scatter as can be seen in the lower right NLSST scatterplot. The “pinch effect” is still  there, but moved up 
slightly due to the non-linearity introduced by Tfield as a multiplier. 
  
As strongly suggested by this visual comparison between buoy and SST predictions, efforts to reduce the rms errors 
down to 0.3°K from the present daytime values hovering around 0.5°K will undoubtedly require the introduction of 
scatter and randomness into future SST algorithms. The question therefore arises as to whether, if used as a separate 
predictor in the MCSST algorithm, Tfield can provide more pronounced scatter and randomness? However, inclusion of 
an additional predictor requires precaution vis-à-vis issues of multi-collinearity, as well as measures of its accuracy. 
  
Characterization of Tfield 
For this study, three characterizations of Tfield are used in order to gauge the effects of increasing spatial resolution and 
accuracy: Clim, K100 and K10. Both Clim and K100 have 100 km spatial resolution, with K10 enjoys a 10 km 
resolution. The global rms errors are taken here to be roughly 1.0°K, 0.7°K and 0.55°K, respectively [2]. Both K100 and 
K10 are updated daily at NAVOCEANO, where there is an effort to create K2 at 2 km spatial resolution. Aside from 
Clim, they are all derived from satellite data and should provide additional information to the MCSST algorithm to 
reduce its present rms error. As previously mentioned, this new version of MCSST is referred to here as TfieldSST. 
However, if this additional information is redundant, issues of multi-collinearity will surface and perhaps make the 
algorithm unstable. 
 
Multicollinearity of Tfield with Existing Predictors 
The fact that the inclusion of Tfield as a product term in NLSST generated randomness in the corresponding scatterplot 
invites an investigation into considering its effect as a separate predictor. Before we do this, however, issues of its 
potential multicollinearity must be addressed. Collinearity is defined as the correlation among the predictors in a multiple 
Regression, and it therefore entangles the effects of the predictors, complicating the interpretation.  
 
“Multicollinearity is a statistical phenomenon in which two or more predictor variables in a multiple regression model 
are highly correlated, meaning that one can be linearly predicted from the others with a non-trivial degree of accuracy. In 
this situation the coefficient estimates may change erratically in response to small changes in the model or the data. 
Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the sample 
data themselves; it only affects calculations regarding individual predictors. That is, a multiple regression model with 
correlated predictors can indicate how well the entire bundle of predictors predicts the outcome variable, but it may not 
give valid results about any individual predictor, or about which predictors are redundant with respect to others. A high 
degree of multicollinearity can also prevent computer software packages from performing the matrix inversion required 
for computing the regression coefficients, or it may make the results of that inversion inaccurate” [3].  
 
If the correlation is too high, then there is no unique solution to the regression coefficients. There is no rigorous threshold  
as to what “too high” means. However, unstable results are expected if no additional information is associated with the 
new predictor, and existing coefficients change markedly when collinear predictor is added. Nevertheless, stability may 
still occur if the correlation with the dependent variable is greater than the correlation with existing predictors.  
 
Figure 2 displays scatterplots of each of the three characterizations of Tfield versus T11. The plots on the left side are color-
coded with respect to the Sun zenith angle, while the ones on the right are color-coded with respect to the absolute value 
of latitude. The corresponding correlation coefficients are shown at the far left. It can be seen that a high degree of 
correlation exists for all three cases, the highest being associated with the greatest spatial resolution, K10. Therefore, 
inconsistent predictions may be generated, if the additional information provided by Tfield is highly redundant compared 
to the satellite data. 
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Figure 2. Scatterplots of the three Tfield characterizations versus T11, and associated correlation coefficients. 

 
Figure 2 reveals that all the scatter plots display very high correlation between Tfield and T11. As expected due to the 
increased spatial resolution and accuracy, the correlation coefficient R is very high and slowly increase from Tfield = Clim 
to K100 to K10. These high values of R should result in competition between the values of the coefficients of T11 and 
Tfield: Tfieldc1 and Tfieldc5 values should move in opposite directions in a complementary fashion. The larger issue is 
whether or not the additional information provided by Tfield is redundant, resulting in an unstable algorithm. Only an 
implementation of the algorithm is able to address this issue. 
 
 
Effect of Gradual Increase of Tfield Contribution to NLSST 
Armed with the above warning signs, we performed an investigation similar to Cayula and May [2] using NLSST, but 
adding an offset Tdiffoffset to the ∆T and S∆T terms instead of Tfield.  
 

( ) ( ) NLNL
field

NLNL
NL ctTdiffoffseTTSctTdiffoffseTTTcTcSST 41211312112111 −+−++−+=  

 
Since Tfield is a multiplier of ∆T, this will allow us to visually evaluate the effect of gradually increasing the effect of 
Tfield and to gauge its effect on the pattern of a scatterplot of SSTNL-T11 versus T11-T12. 
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Figure 3. Effects on NLSST-generated scatterplots due to addition of Tdiffoffset to T11-T12. 
 
The original NLSST with no Tdiffoffset is located at the upper right corner of Figure 3. The upper left corner plot shows 
the effect of Tdiffoffset = -1, which mostly serves to translate the “pinch effect” horizontally to where T11-T12 = 1. 
However, increasing Tdiffoffset to 5 and 10 on the lower part of Figure 3 results in increased scatter and randomness, as 
well as decreasing the rms error from 0.52546 to 0.45413 to 0.44501. These are the effects mentioned previously that we 
consider to be essential ingredients for future efforts to reduce rms error. These desired trends are a strong indication that 
Tfield could be the vehicle to introduce scatter and randomness towards this goal and reduce the rms error.  
  
 
Adding Tfield as a Separate Predictor in MCSST 
From this point forward, MCSST will be used instead of NLSST in order to clearly isolate the effects of adding Tfield as a 
separate predictor. In this section, the effects of the level of aggressiveness of pre-filtering of the buoy dataset for all 
three characterizations of Tfield will be tabulated and overall relationships between regression coefficients that emerge 
from this investigation will be presented. In all of the following tables, c4 values are shown for SST predictions against 
buoy temperatures in °Celsius in order to clearly see the trend in its value due to its higher magnitude. 
 
Table 1 is a repository for 18 runs of TfieldSST, which includes Tfield as a separate predictor. These runs are broken 
down as follows: for each the three characterizations of Tfield (Clim, K100, K10), 6 runs representing aggressive to non-
aggressive pre-filtering of the buoy data with respect to Tfield were performed. The filtering bands are shown in the 
leftmost column of Table 1. The TfieldSST equation is shown at the top without superscripts on the coefficients due to 
lack of space in trying to line them up with their associated column. Each column represents the values of the TfieldSST 
coefficients. The sum of c1 and c5, which we anticipate to be complementary due to the high correlation between T11 and 
Tfield, is shown in the next-to-last column, while the associated rms error is displayed as the end column. 
 
The overall gradual trends in the values of the coefficients serve to ease the initial concerns about unstability of the 
TfieldSST algorithm. The rms error gradually increases as the aggressiveness of the pre-filtering diminishes for all three 
characterizations of Tfield. It can be seen that the rms error also diminishes as Tfield increases in accuracy, from Clim to 
K100 to K10. Remarkably, and a strong confirmation of the stability of the TfieldSST algorithm, the sum of c1 and c5 
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appears to be constant, of magnitude very close to 1.0, illustrating their complementarity due to their high correlation. As 
a shorthand in notation, all rms errors will be understood to be reported in Kelvin units. 
 
One should keep in mind that, although aggressive pre-filtering serves to reduce the rms error, it also can severely 
reduces the number of buoy data points with which the regression analysis can be performed. The rows corresponding to 
the value of 2.0 for pre-filtering, presently being used, is highlighted in blue. 

 
 

Table 1. Effects of pre-filtering buoy data and increased spatial resolution of Tfield  
using MCSST for Sun zenith angles from 0° to 53°. 

 
Changes in Scatterplots due to Tfield as a Separate Predictor 
The addition of Tfield as a separate predictor also results in the addition of significant randomness to the scatterplot, a 
crucial feature mentioned earlier towards increasing the agreement between SST predictions and the buoy data. Figure 4 
compares the buoy data scatterplot versus the scatterplot predicted by MCSST, basically TfieldSST without Tfield as a 
separate predictor, for zenith angles from 0° to 70°, in 10° bands.  
 
Because the plotting routine of each band occurs sequentially, some of the scatter in one band overlaps the previous 
band.  As a way for the reader to assess the amount of overlap between zenith bands, the plotting sequence is shown for 
both Blue to Red and Red to Blue (top for buoy data, bottom for MCSST). The resulting dual scatterplots for MCSST 
reveal that there is practically no overlap of zenith band scatter, except for low values of T11-T12.  
 
In sharp contrast, however, the buoy data scatterplot shows pronounced overlap of zenith band scatter. Figure 5 is similar 
to Figure 4, but with the lower scatterplots predicted by TfieldSST using Tfield = K10. As can be seen, features very 
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similar to the buoy data scatterplot emerge, thereby establishing a strong link between reduced rms error and the 
presence of scatter and randomness in the predicted scatterplot, as was conjectured earlier. 

 

 
Figure 4. Comparison of MCSST predictions with Buoy Data scatterplots, without Tfield, 

for Sun zenith angles from 0° to 70°. 

 
Figure 5. Comparison of MCSST predictions with Buoy Data scatterplots, with Tfield = K10, 

for Sun zenith angles from 0° to 70°. 
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Dependence of Regression Coefficients on Zenith and Latitude 
The extreme stability of the TfieldSST algorithm when Tfield = K10 is also evident from the gradual changes in the values 
of the regression coefficients as either zenith angle or latitude is broken up into equally spaced bands. Besides the steady 
increase of rms error as the zenith angle increases, Table 2 below shows this general gradual change in the values of the 
coefficients with a single glaring exception, such as the value of -0.011 for c3 for the 20°-30° zenith band. It is possible 
that some outlier buoy data values creeped into the original creation of the data file. 
 
In addition, global coefficient values over the entire zenith span from 0° to 70° is shown in order to compare them with  
the global coefficient values derived from MCSST shown in green. Again, the rms error shows a gradual increase in rms 
error over the 10° zenith bands when using these global coefficients, contrasted with the MCSST rms errors in green. 
 

 
 

Table 2. Dependence of regression coefficients on Sun zenith angle, with Tfield = K10. 
 
The same kind of analysis was performed in 20° latitude bands and the values of  the  resulting coefficients are presented 
in Table 3. A gradual increase in rms error can be seen as the latitude bands are further removed from the equator, except 
for the two extreme bands near the poles. The sum of c1 and c5 again shows remarkable constancy, except for the value  
of 0.914 at the equatorial band. 
 
As was done in Table 2, the values of global coefficients for both TfieldSST with K10 and MCSST (green) are displayed 
for comparison. The use of these global coefficients to calculate the rms errors over the latitude bands reveals several 
outliers, whose large biases are highlighted in blue. The rms errors associated with  these large biases, although still 
within the range of values of the other rms errors, are also relatively high. The MCSST global coefficients also predicted 
large biases (green) highlighted in blue. 
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Table 3. Dependence of regression coefficients on latitude bands for Sun zenith angles from 0° to 53°, with Tfield = K10. 
 
 
Reduction of rms error as a function of Sun zenith angle bands 
Present SST algorithms only consider Sun zenith angles from 0° to 53°.  In an effort to quantify the improvement in 
accuracy afforded with the use of Tfield as a separate predictor, Table 4 displays the rms errors predicted by MCSST 
(Present) and by the TfieldSST algorithm when the three characterizations of Tfield are used.  The percent reduction for 
each characterization is shown in green. The reduction in rms error in the zenith band from 0° to 53° is clearly seen from 
left to right, as the spatial resolution of Tfield increases from Clim to K100 to  K10. In addition, results for the zenith 
bands of 53° to 70° and 0° to 70° representing the missing part of the full swath are shown in the last 2 rows of Table 4. 
The rms error percent reduction over the  53° to 70°  zenith band is quite remarkable as the rms error drops from 0.73712 
down to 0.41298 for Tfield = K10. The full swath zenith band of 0° to 70° shows a percent reduction of over 30% with 
K100 and even more with K10. 
 
 

   
  

Table 4. Percent reduction in rms error over Sun zenith angle bands  for the three characterizations of Tfield. 
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Global Improvement of SST predictions against Buoy data 
Another way to visualize the improvements over the 3 zenith bands in Table 4 is to produce worldmaps of SSTTfield-Tbuoy 
corresponding to these zenith bands side-by-side with worldmaps of SSTMC-Tbuoy. Figures 6, 7 and 8 use the Blue to Red 
and Red to Blue method to plot results for 0° to 53°, 53° to 70° and 0° to 70°, respectively. 

 
Figure 6. Global map of SSTMC-Tbuoy and SSTTfield-Tbuoy for Sun zenith angles from 0° to 53°. 

  
Figure 7. Global map of SSTMC-Tbuoy and SSTTfield-Tbuoy for Sun zenith angles from 53° to 70°. 
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For all three figures, the top two worldmaps represent predictions from MCSST, while the bottom two worldmaps are 
the TfieldSST predictions using Tfield = K10. The reduction in rms errors described previously is evidenced by the ability 
of the TfielSST algorithm to remove extreme differences that are present in MCSST results, both positive (towards the 
red) and negative (towards the blue). Note the impressive confinement of differences to the yellow and pale blue colors 
upon close inspection of the TfieldSST worldmaps. 

 
Figure 8. Global map of SSTMC-Tbuoy and SSTTfield-Tbuoy for Sun zenith angles from 0° to 70°.  

 
 

DISCUSSION 
 

Although the ultimate goal is to predict sea surface temperature from satellite data, an investigation about using Tfield as a 
separate predictor, and therefore combining satellite and previously collected buoy data, revealed a few salient features 
and shortcomings that bear discussing. In addition, we present an interpretation of the results that clearly shows the 
synergy in the combination of satellite and buoy data sets towards increasing the accuracy of SST predictions of sea 
surface temperature. The major differences between pre-filtering of the buoy data set and the use of higher spatial 
resolution versions of Tfield are highlighted. Advantages of using Tfield as a separate predictor are discussed, together with 
the ultimate goal of not using it by depending solely on satellite data. 
 
Interpretation of Results 
Equations for the two SST algorithms compared in this paper, MCSST and TfieldSST, are again displayed here for easy 
reference in this discussion: 
 

( ) ( ) MCMCMCMC
MC cTTScTTcTcSST 41211312112111 −−+−+=  

( ) ( ) field
TfieldTfieldTfieldTfieldTfield

Tfield TccTTScTTcTcSST 541211312112111 +−−+−+= . 

As shown in Results section, the sum of the T11 and Tfield coefficients remained remarkably steady around the value of 
unity: 

Blue  Red Color Plotting Red  Blue Color Plotting 

MCSST 

TfieldSST with K10   
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151 =+ TfieldTfield cc . 

In a search for other relationships that could possibly offer additional insight into an interpretation of results, a separate 
investigation of possible relationships between the ratios of TfieldSST coefficients and  MCSST coefficients was 
performed. The results are shown in Tables 5 and 6, which differ only in the range of the Sun zenith angles. The values 
in red were obtained by dividing the TfieldSST coefficients 2, 3 and 4 by the first TfieldSST coefficient, Tfieldc1 .  

Because of the general trends in coefficient values presented earlier and the relatively good agreement in values between 
the MCSST coefficients and these ratios, the following relationship suggests itself: 

TfieldTfield
i

MC
i ccc 1/=  

or 
MC
i

TfieldTfield
i ccc 1= . 

 

Table 5. Comparison of coefficients of MCSST and TfieldSST, as well as their ratios . 
Sun zenith angles are from 0° to 53°. 

 

 

Table 6. Same as Table 5, except that Sun zenith angles are from 0° to 70°. 

Substituting this relationship into the equation for SSTTfield: 

( ) ( )[ ] field
TfieldMCMCMCMCTfield

Tfield TccTTScTTcTccSST 5412113121121111 +−−+−+=  

Resulting in a relationship that clearly illustrates a linear weighted average between only two predictors: 

( ) field
Tfield

MC
Tfield

Tfield TcSSTcSST 11 1−+= . 

The latter equation can be rewritten as a linear function of the difference between SSTMC and Tfield: 

( )fieldMC
Tfield

fieldTfield TSSTcTSST −+= 1 . 

A very simple and insightful interpretation  now emerges.  The TfieldSST algorithm is searching for a correction to the 
background (Tfield) which is a linear function of the difference between observation (satellite data through SSTMC) and 
background (Tfield). Of great relevance and guidance here is the established theory about the relationship between the 

                       c1         c2          c3        c4            c5       rmserror 
MCSST        1.034   2.201   1.360   281.98      ----         0.6382 
TfieldSST    0.163   0.326   0.221     44.48    0.844      0.2987 
                    1.000   2.001    1.356   272.88      ---- 

                       c1         c2          c3        c4            c5       rmserror 
MCSST        1.006   2.541   1.173   274.10      ----          0.5058 
TfieldSST    0.251   0.617   0.312     68.42    0.752      0.2869 
                    1.000   2.467   1.243   272.58      ---- 



14 
 

individual variances for this type of equation.  If, for the sake of simplicity in the resulting relationships, the observation 
and background errors are now assumed to be uncorrelated [5]: 

( ) ( ) 22
1

22
1

2 1
MCTfield SST

Tfield
Tfield

Tfield
SST cc σσσ +−= . 

The optimal Tfieldc1 that minimizes the error variance 2
TfieldSSTσ  is obtained by setting the derivative with respect to Tfieldc1

equal to 0.0, resulting in: 

22

2

1
MCSSTTfield

TfieldTfieldc
σσ

σ
+

=      and       22

2

511
MC

MC

SSTTfield

SSTTfieldTfield cc
σσ

σ
+

==− . 

When this optimal value is used, a simple relationship between the three variances emerges: 

2

2

22

2
2

2

22

2
2

MC

MCMC

MC

Tfield SST
SSTTfield

Tfield
Tfield

SSTTfield

SST
SST σ

σσ
σ

σ
σσ

σ
σ 











+
+











+
=  

( ) ( ) 22

22
22

222

22
2

MC

MC

MC

MC

MC

Tfield
SSTTfield

SSTTfield
SSTTfield

SSTTfield

SSTTfield
SST σσ

σσ
σσ

σσ

σσ
σ

+
=+

+
=  

or 

222
111

MCTfield SSTTfieldSST σσσ
+= . 

 
Note that the resulting variance of  SSTTfield will always be smaller than either variance, due to the “resistors in parallel” 
characteristic of this last relationship. Clearly, should the variances of Tfield and SSTMC be equal, the resulting variance of 
SSTTfield will be half of each, resulting in its rms error being a factor of 2/2  smaller than their rms errors. For example, 
should the rms errors of Tfield and SSTMC each be equal to 0.5, the resulting rms error of SSTTfield would be 0.3535, a 
substantial reduction that is in the neighborhood of TfieldSST rms errors reported in this article. This interpretation and 
its consequences on the variance of SSTTfield correctly and neatly encapsulates the nature, magnitude and overall trend of 
the results presented earlier. 
 
A couple of other interesting relationships which relate the rms errors between SSTTfield and its predictors SSTMC and 
Tfield immediately follow from the above equations: 

MCTfieldMCTfield SST
Tfield

SSTSST
Tfield

SST cc σσσσ 1
2

1
2 =⇒=  

and  

Tfield
Tfield

SSTTfield
Tfield

SST cc
TfieldTfield

σσσσ 5
2

5
2 =⇒= . 

 

From this, a ballpark estimate of the percent reduction in SSTMC rms error is conveniently given by ( )Tfieldc11100 − . 

Introduction of a small correlation between SSTMC and Tfield errors with respect to Tbuoy will introduce minimal changes 
in these ballpark estimates.  
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The global rms error for the Clim, K100 and K10 fields were estimated to be about 1.0, 0.7 and 0.55, respectively [2]. 
Substituting the rms error for SSTMC from Table 5, we arrive at SSTTfield rms error values of  0.450, 0.409 and 0.372 for 
zenith angles from 0° to 53° .Using the SSTMC rms error value from Table 6, SSTTfield rms error values of 0.538, 0.472 
and 0.4166 are obtained when zenith angles from 0° to 70° are considered. These values again are consistent with the 
results concerning the three different characterizations of Tfield were used: Clim, K100 and K10. 

With the above explanation of the reason why the TfieldSST rms error turns out to be substantially smaller than either 
the SSTMC or Tfield rms errors, we now turn to a discussion of the achievability of the 0.3°K threshold for rms error from 
any SST algorithm.  Figure 9 displays several curves which represent the desired rms error as a function of both SSTMC 
and Tfield rms errors. The bold red line represents the desired 0.3°K threshold for rms error. The black circle corresponds 
to a Desired rms error of 0.3535 just discussed in the example above.  

 
Figure 9. Curves of Desired rms errors. 

 
The diagonal dashed line represents the path taken to reduce the Desired rms error with a common reduction factor for 
both SSTMC and Tfield. Its intersection with the 0.3°K threshold curve (red) requires that each rms error be reduced to a 
value of 0.3 / ( 2/2 ) or 0.425, a reduction of about 15% from existing rms errors of roughly 0.5 for both SSTMC and 
Tfield. From the relationship between variances given earlier, the path along the vertical dashed line would require a 
reduction in the SSTMC rms error to a value of 0.375, while keeping the Tfield rms error at 0.5. Due to the symmetric 
nature of the variances relationship that is also illustrated in Figure 9, the path along the horizontal dashed line would 
require a reduction of Tfield rms error to a value of about 0.375 as well, while keeping the SSTMC rms error at 0.5. This 
represents a reduction of about 25% from existing Tfield rms error of roughly 0.5. 

The latter path seems to be the easiest and quickest way to achieve the 0.3°K threshold, as efforts are now under way at 
NAVOCEANO [2] to develop a K2 characterization of Tfield, with a spatial resolution of  2 km. A decrease in Tfield rms 
error is expected with this new product, due to its higher spatial resolution. 

Interestingly, if one is willing to sacrifice a small percentage of the filtered buoy data points, the 0.3°K threshold can be 
easily achieved presently without any improvements to the present SSTMC or Tfield rms errors. More aggressive pre-
filtering of the buoy data is analogous to artificially increasing the accuracy of Tfield, at the cost of eliminating some buoy 
data points. We therefore now present the results of a tradeoff study between pre-filtering aggressiveness, spatial 
resolution of Tfield, range of zenith angles and resulting number of filtered buoy data points available for ingestion into 
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the TfieldSST algorithm, with the ultimate goal of achieving the 0.3°K threshold in Figures 10, 11 and 12, where runs 
were made for values of | Tfield – Tbuoy| = 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0. 

These figures only differ with respect to zenith bands: 0° to 53°, 53° to 70° and full swath 0° to 70°. For each figure, the 
horizontal axis represents the aggressiveness of the pre-filtering, increasing from right to left. The  plot on the left of 
each figure is the rms error resulting from SSTMC (bold red), and the three characterizations of Tfield. The plot on the right 
of each figure displays two variables: the  percent of buoy data left over after the pre-filtering (solid lines), and the 
percent contribution that Tfield makes to the TfieldSST algorithm, expressed as Tfieldc5 in percent units. The 0.3°K 

threshold is represented by the horizontal dashed black line. The vertical dashed line is a visual estimate of the required | 
Tfield -Tbuoy| required to achieve this  goal, and is drawn for a value of 0.7°K. A noteworthy feature is that the K100 and 
K10 characterizations of Tfield seem to converge at that value, while Clim requires more aggressive filtering to reach the 
0.3°K threshold. 

 

Figure 10. Plots of rms error, % of buoy data points filtered  and % of Tfield contribution to TfieldSST, (100 Tfieldc5 ),   

for Sun zenith angles from 0° to 53°. 
 

 

It will be recalled from  the tabular data presented in the Results section, that overall trends showed that the value of 
Tfieldc5  depended on the aggressiveness of the pre-filtering of the buoy dataset against Tfield, the resolution of the Tfield data 

(Clim, K100, K10), as well as the Sun zenith angle. In general, for a given level of pre-filtering, the value of Tfieldc5  

increased and the rms error decreases as the spatial  resolution of the Tfield data increased from Clim to K100 to K10. 
This indicates that the TfieldSST algorithm automatically adjusts the mix of satellite and Tfield data to produce rather 
drastic increases in accuracy of about 30% (equivalent to the multiplicative factor of 2/2  found previously) . Results 
also revealed that the value of Tfieldc5 increases with zenith angle, showing that present regression algorithms that use only 

satellite data are, by themselves, less capable and less accurate as the zenith angle increases.  
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Figure 11. Plots of rms error, % of buoy data points filtered  and % of Tfield contribution to TfieldSST, (100 Tfieldc5 ),   

for Sun zenith angles from 53° to 70°. 
 

  

Figure 12. Plots of rms error, % of buoy data points filtered  and % of Tfield contribution to TfieldSST, (100 Tfieldc5 ),   

for Sun zenith angles from 0° to 70°. 
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All of these gradual trends are reflected in Figures 10 through 12 and therefore reinforce our assumption that TfieldSST 
is basically a linear weighting of SSTMC (satellite) and Tfield (background) data. It is only for high values of  | Tfield – 
Tbuoy|, corresponding to less aggressive pre-filtering, that differences in SSTTfield rms errors reveal themselves between 
each characterization of Tfield. This can be seen on all the plots of rms error vs | Tfield – Tbuoy| in Figures 10 through 12. 
Unlike the Tfield rms errors, the SSTMC  rms error shown in bold red is relatively insensitive to the aggressiveness in pre-
filtering, for all zenith bands shown in Figures 10 through 12. For the 53° to 70° band  of zenith angles shown in Figure 
11, the rms error averages about 0.725, for a combined full swath rms error average of about 0.650 shown in Figure 12. 
The gradual decrease in SSTTfield rms error from right to left for all three characterizations of Tfield is consistent with the 
artificial reduction of Tfield rms error achieved through gradually more aggressive pre-filtering. 

The plots on the right of each figure are more pertinent to our tradeoff analysis, however, where the same vertical dashed 
line with a value of 0.7°K of | Tfield -Tbuoy|  required to achieve the goal of 0.3°K threshold is replicated.  It should be 
mentioned that Clim is also used for MCSST pre-filtering of buoy data, explaining why there is no solid red curve and 
that the green solid curve applies for MCSST pre-filtering. In addition, since there is no Tfield term in MCSST, the red 
dashed curve for MCSST represents a 0.0 value for 100 Tfieldc5 . 

Figure 10 for the 0° to 53° zenith band shows that only about 55% of the data buoy points filtered through at the less 
aggressive range of | Tfield – Tbuoy| for all characterizations of Tfield. In order for the TfieldSST algorithm to achieve the 
0.3°K threshold required with value  0.7°K of | Tfield -Tbuoy|, only about 25% of the buoy data points for Clim are left to 
be ingested into the algorithm, while both K100 and K10 only suffer a more modest decline to 42% and 46%, 
respectively. 

Figure 11 for the 53° to 70° zenith band shows that only about 30% of the data buoy points filtered through at the less 
aggressive range of | Tfield – Tbuoy| for all characterizations of Tfield. In order for the TfieldSST algorithm to achieve the 
0.3°K threshold required with value  0.7°K of | Tfield -Tbuoy|, only about 15% of the buoy data points for Clim are left to 
be ingested into the algorithm, while both K100 and K10 only suffer a more modest decline to 26% and 28%, 
respectively. 

Finally, Figure 12 for the 0° to 70° zenith band shows that about 85% of the data buoy points filtered through at the less 
aggressive range of | Tfield – Tbuoy| for all characterizations of Tfield. In order for the TfieldSST algorithm to achieve the 
0.3°K threshold required with value  0.7°K of | Tfield -Tbuoy|, only about 45% of the buoy data points for Clim are left to 
be ingested into the algorithm, while both K100 and K10 only suffer a more modest decline to 68% and 74%, 
respectively. 

Summarizing, for the present 0° to 53° range of zenith angles considered in SST algorithms, a reduction of about only 
9% in filtered buoy data points results in a drop in rms error from 0.5 for MCSST to the goal of 0.3°K when Tfield = K10 
is used in the TfieldSST algorithm. Similarly, for the 53° to 70° range of zenith angles presently ignored in SST 
algorithms, a reduction of about only 2% in filtered buoy data points results in a drop in rms error from 0.75 for MCSST 
to the goal of 0.3°K for SSTTfield using Tfield = K10. Finally, for the full swath 0° to 70° range of zenith angles, a 
reduction of about only 11% in filtered buoy data points results in a drop in rms error from 0.65  for SSTMC to the goal of 
0.3°K for SSTTfield using Tfield = K10.  

It should be emphasized at this point that only about 55% of the buoy data points are being presently used to achieve a 
rms error of about 0.5 considering only the 0° to 53° range of zenith angles, while our results now provide about 75% of 
the buoy data points over the full swath from 0° to 70° range of zenith angles with an overall rms error of 0.3°K, 
attaining the seemingly elusive goal of SST algorithm development. 
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Our assumption about the linear weighting of SSTMC and Tfield is also validated by the dashed curves on the rightmost 
plots in Figures 10 through 12, which represent the values of 100 Tfieldc5  as a function of | Tfield – Tbuoy|. Recalling that the 

linear weighting resulted in the relationship between the coefficient of Tfield and the rms errors of SSTMC and Tfield: 

22
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MC

SSTTfield

SSTTfieldc
σσ

σ
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=  , 

and that 1.0, 0.7 and 0.55 were the rms errors quoted earlier for Clim, K100 and K10, respectively, we consider the least 
aggressive values of 5.0 for | Tfield – Tbuoy|. From Figure 10, we take the SSTMC rms error to be 0.55. Combining with the 
three characterizations of Tfield, we arrive at values for 100 Tfieldc5  of  23.22%, 38.2% and 50.0% for Clim, K100 and K10, 

all representing a difference of less 5% compared to values from the plot. From Figure 11, we take the SSTMC  rms error 
to be 0.75 when | Tfield – Tbuoy| = 5°K. Combining with the three characterizations of Tfield, we arrive at values for 100

Tfieldc5  of  36.0%, 53.4% and 65.0% for Clim, K100 and K10, all representing a difference of less 15% compared to 

values from the plot. From Figure 12, we take the SSTMC rms error to be 0.67 when | Tfield – Tbuoy| = 5.0. Combining with 
the three characterizations of Tfield, we arrive at values for 100 Tfieldc5  of  30.9%, 47.8% and 59.7% for Clim, K100 and 

K10, all representing a difference of less 10% compared to values from the plot. 

The gradual trend for 100 Tfieldc5 for all zenith bands is to increase to 100% as the aggressiveness of pre-filtering increases. 

The smoothness of the dashed curves are evidence of the inherent stability of the TfiedSST algorithm. This trend to a 
value of 100% is revealed by the equation for Tfieldc5  above by setting the Tfield rms error to 0.0, a condition which results 

from the artificially induced reduction in rms error due to more aggressive pre-filtering. Discrepancies between 
calculated values of 100 Tfieldc5 and those read from the plots in Figures 10 through 12, could have arisen from the fact that 

all the runs were performed by allowing all of the MCSST coefficients to interplay with the Tfield coefficient. The 
MCSST algorithm was not inserted as a single predictor by itself during our investigation, thereby slightly diminishing 
the dichotomy between SSTMC and Tfield needed to derive the above relationships between variances. It is also probable 
that some small correlation exists between errors in SSTMC and Tfield, which would slightly affect the predictions of the 
values for 100 Tfieldc5 . Overall, however, the interpretation of the TfieldSST algorithm as a simple linear combination of 

satellite-derived data through SSTMC  and background observation through Tfield resulted in predictions for the values of 
their coefficients that closely mimic both the trends and magnitude of the results of our investigations.  

  

CONCLUSION 

A visual side-by-side comparison of the characteristics of two scatterplots was first performed to look for clues that 
would lead to an overall reduction in SST algorithm rms error. The horizontal axis on both represented the differences 
between T11 and T12. The vertical axis were similar, as one involved the differences between buoy temperatures in 
Kelvin units and the brightness temperature T11, while the other involved the differences between SST predictions in 
Kelvin units and the brightness temperature T11. The presence of Tfield in the NLSST algorithm somehow generated a 
slight  randomness that was present in the scatterplot involving the buoy data, and not in the MCSST-generated 
scatterplot. This behavior suggested the use of Tfield as a separate predictor added to the MCSST algorithm, resulting in 
an algorithm appropriately named TfieldSST.  
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Analysis of the resulting coefficients in the TfieldSST algorithm showed a remarkable constancy in the sum of Tfieldc1  and 
Tfieldc5 , the coefficients of T11 and Tfield, respectively, gravitating around a value of 1.0 regardless of the pre-filtering 

aggressiveness or zenith and  latitude bands. This constancy also surfaced for three characterizations of Tfield that were 
used in this study, in order of increasing spatial resolution: Clim, K100 and K10. This was accompanied by substantial 
reductions in rms error of well over 30% for certain zenith and latitude bands. An additional finding was that a general 
relationship between coefficients of MCSST and TfieldSST seemed to be present, suggesting the simple relationship: 

MC
i

TfieldTfield
i ccc 1= , where i = 1, 4.  

When these two relationships were substituted into the TfieldSST algorithm,  it took on the form of a simple linear 
weighted average of two separate predictors: SSTMC  predictions derived from satellite observations, and a background 
first guess temperature field, Tfield. Well-known established relationships between the coefficients and rms errors for this 
type of equation provided major insight into how to proceed towards the goal of attaining an accuracy of 0.3°K accuracy. 
The “resistors in parallel” relationship between the variances of SSTTfield, SSTMC and Tfield ensured that the rms error 
value of SSTTfield will always be smaller than the SSTMC and Tfield rms errors. 

In particular, it was shown that the 0.3°K threshold could be attained at the very minor cost of sacrificing a small 
percentage of data buoy points through more aggressive pre-filtering. However, because our method is valid over the full 
swath from 0° to 70° zenith angles, over 75% of the original data buoy points are now being used with an accuracy of 
0.3°K. This is compared to the present 0° to 53° zenith angles, for which about 50% of the original data buoy points are 
now being used to obtain a rms error of about 0.5 for daytime scenarios. There is therefore a need for pre-filtering 
standards for consistent comparison of results because aggressive filtering results in lower rms error in the TfieldSST 
algorithm, much more so than in the MCSST algorithm. 
 
Future improvements include efforts to reduce  rms errors in both predictors in TfieldSST: SSTMC and Tfield accuracy. 
The latter is expected to result from a NAVOCEANO effort to develop a 2km spatial resolution K2 characterization of 
Tfield. Increasing the accuracy of SSTMC at large zenith angles beyond 53° should be achievable by including sea surface 
emissivity and roughness. 

The linear weighted average form of  TfieldSST guarantees increased accuracy in all existing SST algorithms, daytime 
and nighttime, by simply adding Tfield as a predictor, due to the “resistors in parallel” relationship between variances. In 
effect, existing SST algorithms can be considered as “fine-tuning” the first guess field, Tfield. It should be pointed out that 
K100 and K10 are also described by the community as satellite-derived [3] and can be considered as satellite data from 
an earlier date. The multichannel concept and physics behind present SST algorithms remains intact since they act as 
separate predictors in TfieldSST.  Also of note is that the Tfield information has no information about zenith angles 
involved, and daily satellite data is still crucial in obtaining much better overall accuracy.  
 
It should be noted that the predictors SSTMC and Tfield can either be input together  in °Celsius or °Kelvin units, 
depending on what units are desired for SSTTfield predictions, avoiding the confusion in temperature units present in 
NLSST. 
 
Another salient feature of TfieldSST is that it reveals the strong and weak domains of present SST algorithms. The 
relative values of  of Tfieldc1  and Tfieldc5 , because they have been shown to be related to combinations of the  respective rms 

errors of SSTMC and Tfield, helps to  identify zenith and  latitude bands where satellite data contribution through SSTMC  is 
insufficient by itself right now to obtain the desired 0.3°K accuracy.  
 
A fruitful analogy that parallels our findings is now presented that neatly summarizes our results, which are very similar 
to the well-known noise reduction achieved by frame averaging imagery captured by a camera. If the noise is assumed to 
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be uncorrelated from frame to frame and of equal variance, the addition of only two frames reduces the variance by half 
or, equivalently, reducing the noise rms error by 30%, a substantial result that was shown earlier during our discussion of 
linear weighting between SSTMC and Tfield. If this “imagery”  now represents  the global distribution of Tbuoy, which is the 
information that we are trying to extract, then SSTMC and Tfield are equivalent to two “noisy” frames of Tbuoy, but with 
different variances. As we found, the result of adding them together with linear weighting  is to automatically reduce the 
variance of  SSTTfield. The TfieldSST algorithm finds the optimal combination of these two noisy frames that will provide 
the smallest resulting variance, thereby providing a less noisy image of Tbuoy. 
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