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ABSTRACT 
 

The objective of this work is to determine the location(s) in any given oceanic area during different temporal periods 
where in situ sampling for Calibration/Validation (Cal/Val) provides the best capability to retrieve accurate radiometric 
and derived product data (lowest uncertainties).  We present a method to merge satellite imagery with in situ 
measurements, to determine the best in situ sampling strategy suitable for satellite Cal/Val and to evaluate the present in 
situ locations through uncertainty indices.  
This analysis is required to determine if the present in situ sites are adequate for assessing uncertainty and where 
additional sites and ship programs should be located to improve Calibration/Validation (Cal/Val) procedures. 
Our methodology uses satellite acquisitions to build a covariance matrix encoding the spatial-temporal variability of the 
area of interest. The covariance matrix is used in a Bayesian framework to merge satellite and in situ data providing a 
product with lower uncertainty. The best in situ location for Cal/Val is then identified by using a design principle (A-
optimum design) that looks for minimizing the estimated variance of the merged products.  
Satellite products investigated in this study include Ocean Color water leaving radiance, chlorophyll, and inherent and 
apparent optical properties (retrieved from MODIS and VIIRS). In situ measurements are obtained from systems 
operated on fixed deployment platforms (e.g., sites of the Ocean Color component of the AErosol RObotic NETwork-
AERONET-OC), moorings (e.g, Marine Optical Buoy-MOBY), ships or autonomous vehicles (such as Autonomous 
Underwater Vehicles and/or Gliders). 
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1. INTRODUCTION 
State-of-art satellite ocean color missions require the indirect calibration of the space sensor (vicarious calibration) and 
the following validation of derived data products (processes commonly denoted as Cal/Val)[1]. These post launch 
activities, should complement extended the pre-launch sensor characterization and on-orbit stability monitoring 
constituting the background for any successive action[2]. The ocean color community has recognized that ground-based 
measurements are an essential element for Cal/Val activities.  During the last two decades, Cal/Val activities benefitted 
of advances in the parameterization of radiative transfer processes (e.g., in-water radiance distribution), development of 
in situ measurement protocols and processing schemes, design of new field instruments (e.g., hyperspectral), and  the 
quantification measurement uncertainties[3].This study provides a further through the identification of location(s) in 
various geographic regions where in situ measurements support of Cal/Val activities provides the lowest uncertainties as 
a function of annual periods. 
Merging of remote sensing data with in situ measurements is a viable way to increase the quality of satellite-derived 
products. Conventionally, covariance analysis is applied to oceanographic and meteorological data sets to decompose 
space- and time-distributed data into modes ranked by their temporal variance, while optimum sampling analysis is 
applied to find an adequate amount and allocation of in situ data to improve satellite quality by reducing their 
uncertainties. To address our goal (i.e., minimize uncertainty to do Cal/Val activities), we needed to draw on 
methodologies from different fields and we introduce: 

 techniques to evaluate the covariance from time-series of satellite imagery; 
 methodology to merge satellite and in situ measurements; and 



 methodology to generate uncertainty maps and uncertainty indices from the available time series images and 
 historical information. 

We then implement these methodologies on several optical data sets. In particular, we focus on satellite MODIS time-
series water leaving radiances and several optical in situ platforms, such as Marine Optical Buoy (MOBY) and the Ocean 
Color component AErosol RObotic NETwork (AERONET-OC).  
 
2. DISTRIBUTED SENSOR SYSTEM DESCRIPTION 
2.1 Satellite sensors 
The daily satellite images used in this study were collected from the Moderate Advanced Very High Resolution 
Radiometer (MODIS) on the NASA AQUA platform, and from the Visible Infrared Spectrometer (VIIRS) on the NASA 
NPOESS Preparatory Project (NPP) satellite launched on October 28th, 2011. Satellite images were processed at the US 
Naval Research Laboratory (Stennis Space Center) with APS-4 software (extension to the NASA L2gen) and archived at 
NATO NURC. All satellites images were corrected for distortion and registered to a map using the Lambert Projection[6]. 
The ground resolution is 1 km for MODIS sensor and 0.75 km for VIIRS sensor. The available images have been 
processed to select a set of clear areas (cloud coverage <10%) in a box of about 30 by 30 km2 around the areas of interest 
(i.e., in situ measurement sites). This procedure has led to the construction of time-series that could subsequently be used 
to perform historical analyses. 

2.2 In situ data 
The term Cal/Val refers to vicarious calibration of the space sensor and the validation of satellite derived products 
through the use of in situ measurements[3]. Presently, the ocean color community collects in situ measurements of 
various quality, and therefore these data are ranked for different use from highest quality to lowest, in (a) vicarious 
calibration, (b) validation, (c) algorithm development, (d) general research and (e) monitoring. In situ data collected for 
vicarious calibration should exhibit the minimum measurement uncertainties and additionally refer to sites characterized 
by low natural variability (oceanic and atmospheric) in view of minimizing the effects of environmental perturbations[3]. 
For the development of this study, we focused on two in situ data sets: those from the Ocean Color component of 
AErosol RObotic NETwork (AERONET-OC) [4], established to support satellite ocean color validation activities through 
standardized measurements performed at multiple sites generally located in coastal regions; and those from the Marine 
Optical Buoy (MOBY), a unique site established to support the vicarious calibration of satellite ocean color sensors with 
measurements of very high accuracy. These sites produce a large number of optical parameters (such as the water 
leaving radiance, nLw), which can be used to evaluate the statistical uncertainty for Calibration and Validation 
procedures. More specifically, 

 AERONET (http://aeronet.gsfc.nasa.gov/) is an optical, ground-based aerosol monitoring network and data 
archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions. 
The network hardware consists of identical, automatic, sun-sky scanning spectral radiometers owned by national 
agencies and universities. Data from this collaboration provides globally distributed, near-real time observations of 
aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. The 
network imposes standardization of instruments, calibration, processing and distribution. The AERONET-OC sub-
network provides the additional capability of measuring the radiance emerging from the sea (i.e., water-leaving 
radiance) with modified sun-photometers (SeaPRISM) installed on offshore platforms like lighthouses, and 
oceanographic and oil towers. NASA manages the network infrastructure (instrument calibration, data collection, 
processing and distribution within AERONET); the Joint Research Center, European Commission (JRC) has the 
scientific responsibility for the processing algorithms and performing quality assurance of data products[5]; and PIs are 
responsible for establishing and maintaining the sites. Data products include the normalized water leaving radiance 
and aerosol optical thickness at the nominal center-wavelengths of 412, 443, 488, 531, 551, 665 and 870 nm. Near-real 
time data products are accessible at the AERONET web site. For this study, we used quality-assured, Level 2 data 
available at the end of each deployment period (generally lasting 6-12 months) after post-deployment calibration of 
SeaPRISM. Uncertainty estimates are thoroughly documented and discussed[4].  
 Since late 1996, MOBY has been the primary basis for the on-orbit vicarious calibrations of many missions 

(OCTS, SeaWiFS, GLI, POLDER, MODIS, MERIS, VIIRS). System characteristics, characterization efforts, and 
uncertainty budget have been duly presented in literature[6,7]. MOBY is a 14-meter long buoy system developed and 
instrumented to measure upwelling radiance and down-welling irradiance at the sea surface and at three subsurface 
depths. Subsurface light is transmitted by fiber optics to the MOBY spectrograph for continuous energy measurements 
at sub-nanometer resolution from 340 nm (ultraviolet) to 950 nm (near-infrared) wavelengths. Standard meteorological 



observations are collected concurrently with the wavelength measurements, and supplemental oceanographic 
measurements, such as natural phytoplankton fluorescence, are also collected.  MOBY transmits the collected data to 
Marine Optical Characterization Experiment (MOCE) Team members on a daily basis.  These data are then processed 
and made available to SeaWiFS and MODIS Ocean Science Team members. These data are available for download 
from http://data.moby.mlml.calstate.edu. 
 

3. THEORETICAL APPROACH 
Satellite time-series data can be used to build a covariance matrix describing the spatial-temporal variability of the area 
of interest. In situ observational resources can then be adaptively distributed following the covariance-oriented criterion 
from the time-series to assign the best value for in situ field at grid points using a regular grid coincident with the centers 
of the satellite pixels. The best in situ sampling locations can be found using an optimum design procedure, such as an 
‘A-optimum’ design.  
 
3.1 Covariance 
Consider an oceanographic field ),,( tyxψ  measured from satellite at a given time and known observation error, a 
generic satellite time-series can be represented as: 
  

    ( ) 1...Nk ,1...Nj ,1...Ni      ,, yx ==== kjiijk tyxψψ  (1), 
 
The result of Equation (1) is a three-dimensional grid that depends on the longitude (x), the latitude (y) and the time (t). 
This grid of data can be reshaped as a two-dimensional grid of M rows by N columns: 
 
     ),( NMTTMN ≡                   (2), 
 
where M (=Nx x Ny) represents the number of spatially distributed points (the product of x by y) while N represents the 
number of points over time (t). Using this representation, the covariance matrix (C) can be evaluated by multiplying T by 
its transpose or vice versa, depending on the size of the working dimensions (space and time)[8]. Because the data that we 
have retrieved from satellite observations are much more densely in space than in time (N<M), the covariance matrix has 
been evaluated implementing the following equation: 
 

     CNN = (TMN )'⋅TMN = TNM ⋅TMN    (3), 
 
from which results a matrix of N  rows by N columns. It is important to note that each element of the C matrix represents 
the correlation between two columns of T. In other words, it represents the time correlation between two satellite pixels. 
Moreover, the preliminary results from our simulations and real data have shown that C is also dependent on the sensor 
noise (satellite). For this reason, we have investigated a methodology to remove the sensor noise dependence (supposing 
that it is known a priori), making C independent of that noise. To achieve this, C is decomposed into two orthogonal 
matrixes following Equation 4: 
     C ⋅V = V ⋅D    (4), 
 
where V and D are the eigenvalues and the eigenvectors of C, respectively; in particular, D is the canonical form of C (a 
diagonal matrix with C's eigenvalues on the main diagonal), while V is the modal matrix (its columns are the 
eigenvectors of C). These characteristics make it possible to remove the sensor noise ( 2

satσ ) by using the eigenvalues of 
C. Therefore the matrix D can be modified as follows: 
 

     
D=

1
K

(D−σ sat
2 ⋅K)

   
(5), 

 
where k is a vector that contains ones at locations of positive eigenvalues. Finally, replacing the negative eigenvalues 
with zeros, the new covariance matrix can be evaluated using the formula: 
   

  'VDVC ⋅⋅=     (6). 



3.1 Merging procedure 
Merging remote sensing data with in situ measurements is a standard procedure that aims at increasing the accuracy of 
satellite-derived products. The idea is to study the spatial-temporal variability of satellite data and to distribute the in situ 
measurements over the image following the covariance criterion. Therefore, once the covariance C has been obtained 
from Equation (6), a new field, resulting the merging of in situ and satellite data, is determined by maximizing the 
probability distribution: 
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(7), 

 
where Kψ  represents the estimated pixel value, obsψ  is the observation vector, H is the observation matrix and obsΣ is 
the observation error matrix. The first term in the exponential represents the likelihood density while the second product 
of the matrices represents the a priori probability. The merging procedure is performed maximizing the a posteriori 
probability distribution, and therefore, the best estimation is represented by the field ψ : 
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(8). 

 
The solution of Equation (8) represents the merged image. It is important to point out that the merging technique can be 
applied to in situ measurements that pass the following criteria:  
 
• In situ and satellite acquisitions have to be almost coincident (in this study they are kept for the analysis if 

performed within 1 hour); 
• In situ acquisitions have to be taken under low wind conditions (less than 12 m/s) and with solar zenith angle lower 

than 70 degrees; and 
• The satellite area has to have cloud coverage <10%. It is important to note that the covariance analysis is directly 

dependent on cloud size and position, in the sense that the introduction of clouds causes a loss of information and 
decreases the correlation length (as expected).  More details can be found in literature[9]. 

 
3.2 Optimum design  
Sampling strategies of in situ observational resources driven by a design principle called A-optimality could substantially 
improve the accuracy of the final blended products. The scope of A-optimal designs is to minimize the spatial average 
variance of the estimated field with respect the sample locations. This approach can be used to identify the best locations 
for in situ sampling for Cal/Val. This optimal criterion will select locations in regions with low uncertainty and large 
spatial representation. Like other standard variance-oriented criteria in optimal experimental design, a covariance model 
must be known a priori. Satellite information could be employed to build a covariance matrix encoding the spatial-
temporal variability of the area of interest. In situ measurements could then be adaptively distributed following the 
variance-oriented criterion, to assign the best values of the in situ observed fields at points of a regular grid coincident 
with the centers of satellite pixels. This procedure would ensure the optimality of merged products for limited in situ 
observational resources. The implementation of this technique was initially performed using a Genetic Algorithm (GA) 
that mimics the process of natural evolution. This algorithm iteratively searches for the best in situ position which 
minimizes the variance of the retrieved solutions. The optimization problem was also investigated using a Simulated 
Annealing (SA) strategy that is a generic probabilistic metaheuristic for the global optimization problem of locating a 
good approximation to the global optimum of a given function in a large search space. The retrieved optimization results 
from GA and from SA were comparable, but SA results are achieved much faster; therefore the SA method is here used. 
 
3.3 Uncertainty Index (UI) 
The approach presented above is adequate when there is the possibility to plan the in situ sampling.  However, we also 
need to determine if the current, geographically fixed in situ sites (such as MOBY and AERONET-OC) are adequate for 
assessing the uncertainty. For this purpose, we have defined an Uncertainty Index (UI) that is independent of the 
geographic position and on the size of the considered area. In particular, we have defined an index that relates the 
goodness of the measurements in a user-defined location in relation to a reference site. The idea is to define a parameter 
that is independent of the size of the study area in order to provide an absolute value that can be used for several areas. 
This index is defined as a complex number:  



 

 jsgUI +=       (9), 
 
UI takes into account: 
 The goodness of the measurements in respect to the reference site – g (for example g = 2 means that the performance 

of the new position is lower of a factor 2); 
 The area of influence of the retrieved result (s). 

In order to have an absolute reference to relate the goodness of the study measurements, an in situ reference has to be 
defined. On the basis of our covariance-oriented analysis, we have decided to use MOBY (Hawaii) as reference because 
of its expected ideal performance due to the homogeneity of the area and the major effort put in system characterization 
and calibration. Using MOBY as normalization reference, equation (9) can be re-written as: 
 

Moby

insitu

Moby

insitu

Area
Areaj

Var
VarUI +=

                
(10), 

where 

 ),( iiCovVarinsitu ≡  is the value of the covariance matrix corresponding to the in situ pixel position (i, i), 

 
Moby

insitu

Var
Var is the ratio of variance retrieved from the covariance matrix of the in situ source of interest (for example, 

AERONET-OC), and the covariance matrix of the reference in situ (MOBY). The value of the matrix is an index that 
represents the correlation of the pixel i with the surrounding pixels in the area. The ratio provides a value that takes into 
account the goodness with respect to the reference site; for example if 2=

Moby

Aeronet

Var
Var , the estimated variance of 

AERONET-OC is two times higher than MOBY. 
 

Moby

insitu

Area
Area is the ratio retrieved from the evaluation of the area with a higher correlation. This area is defined using a 

threshold that depends on the correlation of the pixels of interest: 
2

),( iiCovThreshold = .  
In the following table we have listed the MOBY results (covariance and area) that have been used to retrieve the UI of 
the in situ region of interest. 
 

MOBY COV Area 
Jan 0.9532 1321 
Feb 0.9668 1040 
Mar 0.9771 914 
Apr 0.9144 1426 
May 0.9787 480 
Jun 0.7215 782 
Jul 0.7862 701 
Aug 0.9450 1180 
Sep 0.9951 1222 
Oct 0.988 631 
Nov 0.9270 751 
Dec 0.9453 382 

 
Table 1: MOBY reference table. 

 
4. DATA PROCESSING RESULTS 
The focus of the analysis presented here is the evaluation of the covariance field in MODIS images to study the 
performance of AERONET-OC and MOBY. The idea is to distribute the in situ observational resources following the 
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Figure 2:  Statistical analysis for the month of January. (a) Historical Map, (b) Time series mean, (c) Covariance 
(diagonal) (c) Uncertainty Map. 

 

 

Figure 3:  Historical results for the region around the AAOT site. 

 

 



 

AAOT UI index 
Jan 0.7576+j0.1528 
Feb 0.9742+j0.4338 
Mar 0.9800+j0.4200 
Apr 1.0539+j0.2824 
May 0.9877+j0.4333 
Jun 1.2895+j0.7200 
Jul 1.2388+j0.5669 
Aug 1.0172+j0.4414 
Sep 1.0100+j0.2700 
Oct 0.9786+j0.7862 
Nov 1.0673+0.6794 
Dec 1.0247+j0.2907 

 
Table 2: Uncertainty Index table for the region around the AAOT site. 

 

 

Figure 4:  Processing chain applied for the statistical analysis of the MODIS time series images for the MOBY site. 

 

 

 

 

 

 

 



 

 

Figure 5:  Statistical analysis for the month of January. (a) Historical Map, (b) Time series mean, (c) Covariance 
(diagonal) (c) Uncertainty Map 

As for the region around the AAOT site, we produced twelve monthly Historical Covariance Maps that have been used 
to calibrate in situ data without satellite acquisitions but taking into account the ”statistical behavior” of the satellite. 
Figure 6 shows the results from the identification of the best locations of in situ sampling using our A-optimum design 
methodology. 
 

 

Figure 6:   Historical results for the region around MOBY. 

Compared with the AAOT AERONET-OC, the “best” results for the MOBY area Hawaii are farther (~15 km) from the 
actual MOBY site, but are more regularly spaced around the station in agreement with the open ocean character of the 
region.  



5. Conclusion 
We have presented methodologies to perform product retrieval uncertainties in order to estimate optimal in situ sampling 
strategies. In particular, we have studied a procedure for merging satellite data with in situ measurements to decrease 
satellite uncertainties. This methodology can be used to define optimum locations where in situ data should be collected 
to support Cal/Val activities. Satellite ocean color products include water leaving radiance, chlorophyll, and inherent and 
apparent properties. In situ measurements can be obtained from moorings (MOBY), ships, autonomous vehicles (such as 
Autonomous Underwater Vehicles and/or Gliders) or grounded platforms (AERONET-OC).  
We have evaluated the capabilities of two existing in situ measurement sites in support of satellite ocean color Cal/Val 
activities. In particular, we have applied our method to MODIS time-series images surrounding the AAOT AERONET-
OC site in the northern Adriatic Sea and those surrounding MOBY site in Hawaii. The covariance matrix of the available 
time-series was used in a Bayesian framework to estimate the best in situ location for vicarious calibration (requiring low 
variability) using a Simulated Annealing Algorithm and the resulting Historical Maps have been used to analyze those 
areas.  As expected, results show that the open ocean MOBY site is located in a more homogeneous area in comparison 
to the coastal AAOT site, and therefore provides higher performance.  This fully supports the use of MOBY as a 
reference for future analysis aiming at producing of an Uncertainty Index (UI) that is independent of geographic position 
and on the size of the considered area. Our methodologies will be used to support the Cal/Val effort for the Visible 
Infrared Spectrometer Sensor (VIIRS). 
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