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ABSTRACT 

In the past few decades, various algorithms have been developed for the retrieval of water constituents from the 

measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines 

an error target (or error function) between the input remote sensing reflectance and the output remote sensing 

reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the 

absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables 

when the error function reaches a minimum are the optimized properties that form the input remote sensing 

reflectance; or in other words, the equations of the model are solved numerically. The applications of this approach 

implicitly assume that the error is a monotonic function of the model variables before and after the minimization 

state is reached. Here, with data from numerical simulations, we show the shape of the error surface as a mechanism 

to visualize the solution space for the model variables.  Further, using two established model forms as examples, we 

demonstrate how the solution space changes under different model assumptions as well as the impacts on the 

retrievals.  
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1. INTRODUCTION 

The spectral distribution of reflected Sun light upwelling from beneath the ocean surface, which is often referred to 

as remote-sensing reflectance or Rrs(λ), contains information on the composition of in-water constituents and forms 

the basis to retrieve such information from satellite measured radiance. Historically, the methods to quantitatively 

retrieve such information from ocean color radiometry include simple empirical regression techniques [1, 2], 

algebraic solutions [3, 4], and numerical optimization [5-8] of modeled spectrum based on inherent optical 

properties (IOP). One such spectral optimization algorithm (SOA) was proposed in the Coastal Zone Color Scanner 

(CZCS) era [5]. However, because it searches for the optimal set of solutions among numerous candidates for each 

measured reflectance spectrum, SOA was associated with large computational burden that consequently limited its 

application in processing satellite-measured ocean color images. In the recent decade, due to the rapid advancement 

of computer hardware and software, computation burden has become less critical and there is renewed interest in 

using SOA as an operational tool to process satellite ocean color data [9, 10] from modern sensors such as Sea-

viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and 

Medium Resolution Imaging Spectrometer (MERIS).  

Various SOA schemes have been developed in the past three decades [11-13]. Two such algorithms include the 

Hyperspectral Optimization Process Exemplar (HOPE) model [6, 14] and the Garver-Siegel-Maritorena (GSM) 

model [15]. As with other published approaches [7, 12, 13], HOPE and GSM assume a spectral shape (or 

eigenvector) for the component IOPs (i.e., absorption due to phytoplankton and yellow substance, backscattering 

due to particles) and retrieve the optimal magnitudes (or eigenvalue) of those eigenvectors that best reproduce the 

spectral distribution of the observed ocean color signal. The principal differences between the models, therefore, 



rest with the assumed spectral shapes of the component IOPs. The optimization schemes applied to these models 

assume that there is no local minimum in the error function or that any such local minimum can be overcome by the 

optimization algorithm and software [16, 17]. Here, using data from numerical simulations, we visualize the shape 

of the solution space and demonstrate that the error function has a clearly defined global minimum. More 

importantly, we show that the assumed spectral models have significant consequences on the closure between 

measured and modeled remote sensing reflectance and thus on retrievals of spectral optical properties. 

 

2. BRIEF REVIEW OF SOA  

For optically deep waters, the spectral reflectance upwelling from beneath the ocean surface, Rrs, can be modeled as 

a function of total absorption and total backscattering coefficients of the water column [18], i.e.,  

   ( )     ( ( )  ( ))                                 (1) 

where a(λ) and B(λ) are the spectral absorption and backscattering coefficients, respectively.  

For SOA, an error function is defined and minimized to derive the optimal model variables, i.e., 
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where ⋂     represents the average of a spectrum between wavelengths of λ1 and λ2 (n is the number of spectral 

bands), Rrs(λ) is the spectrum from measurements, while  ̃  ( ) is the spectrum from modeling. 

Typically, a(λ) and B(λ) are modeled as spectral functions of a series of scalar variables Xi, with i generally equal to 

or greater than 3.  ̃  ( ) then becomes a function of Xi, and δRrs in general is: 

        (  )                                                                  (3) 

In spectral optimization, for a given Rrs(λ), the values of Xi are optimal when δRrs reaches a minimum. For all SOA 

schemes, although there are subtle differences in handling the IOP to AOP model (Eq. 1) and the error function (Eq. 

2), most of the differences are embedded in the spectral models of a(λ) and B(λ). For example, when the spectrum 

of particle backscattering is modeled as a power-law function of wavelength [1], the exponent value is 1.03 in the 

GSM [15], while it varies with Rrs(λ) in HOPE [3]. Further, because of the different spectral models, different SOAs 

may have different     
      (minimized δRrs) (Figure 1a) or identical     

      but  ̃  ( ) matches Rrs(λ) at different 

wavelengths (Figure 1b). Because of such characterizations, SOA schemes are not the same, and the assumed 

spectral treatment of the a(λ) and B(λ) in individual SOA schemes is the primary driver for differences in remote-

sensing retrievals (see examples in IOCCG Report #5 [11]).  

 

 

Figure 1. Examples of target and optimized spectral remote sensing reflectance. (a) HOPE and GSM achieved different degree of 

goodness of fit; (b) HOPE and GSM achieved identical goodness of fit, but the matching is different spectrally. 

 

Compared with algebraic solutions, where all derivation steps are explicit, the solution steps of an SOA (i.e., 

numerical trial-and-error) are in general not explicit. To be able to have an unequivocal solution with an SOA 

scheme, δRrs must have a global minimum, and the design of the computer software must be able to overcome local 

minima if they exist. It is therefore useful to know the surface shape of δRrs, especially around the value of     
   . 
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For instance, if the surface shape of δRrs resembles the letter U, i.e., it changes very slowly around     
    for 

changing Xi, it will result in either more computation time to reach     
    and/or ambiguity (large uncertainties) in 

the derived Xi values. On the other hand, if the surface shape of δRrs resembles the letter V, i.e., it changes sharply 

around     
    for changing Xi, it will result in less computation time to reach     

    and less or no ambiguity in the 

derived Xi values. 

 

3. DATA AND METHODS  

3.1 Model of Rrs 

Many studies were carried out in the past decades to find a suitable and accurate function to represent Eq. 1 (see 

review in Lee et al). Without loss of generality, and to be consistent with an earlier effort (GSM), here the model of 

Gordon et al [18] is used to calculate sub-surface remote-sensing reflectance (rrs) from absorption and 

backscattering coefficients: 
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This rrs is propagated through the surface to get the above-surface remote sensing reflectance (Rrs) 
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3.2 Data 

The simulated dataset by the IOCCG Algorithm Working Group [11] is used in this study, which contains 500 

spectral Rrs and the corresponding spectral IOP components, with wavelengths spanning the range of 400 – 800 nm 

at 10 nm spectral resolution. The dataset was sub-sampled to obtain wavelengths at 410, 440, 490, 510, 555, and 

670 nm, spectral bands that closely match the settings of SeaWiFS. The values at 555 nm are simple averages of 

values at 550 nm and 560 nm. For each spectrally sub-sampled data point,  ̃  ( ) was calculated with a(λ) and B(λ) 

that were used as inputs for the Hydrolight simulations, and then δRrs is calculated. Figure 2 shows the distributions 

of δRrs of the 500 points when sub-sampled to SeaWiFS bands. Generally δRrs is centered ~5%, which is consistent 

with the conclusion of Gordon et al [18] as the particle phase functions used in the IOCCG simulation and that in 

Gordon et al [18] are not identical. Note that in the inversion process (no matter which scheme), it is always 

considered that Eq. 4 is error free, so this model introduced difference will be propagated to the derived properties. 

 

Figure 2. Distribution of “error” of Gordon et al [18] Rrs model. 

 

3.3 Spectral model of IOPs 

δRrs is a complex function of Xi used to generate spectral Rrs. Let the number of variables as N and the number of 

spectral bands of Rrs as n (n has to be equal to or greater than N for possible solutions), δRrs may reach 0 when n=N 

and increases with the value of (n-N) if Rrs is not spectrally correlated. For easier demonstrations and following a 

widely applied practice, we selected a three-parameter model system [19] to calculate  ̃  ( ). Basically, spectral 

a(λ) and B(λ) are modeled as 
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aw(λ) and Bw(λ) are values of water molecules and are considered universal constants (although they may change 

slightly with temperature and salinity [20]), with aph(λ), adg(λ) and Bp(λ) the absorption spectra of phytoplankton 

and detritus-gelbstoff and backscattering spectrum of suspended particles, respectively. Thus there are three 

unknown spectra (aph(λ), adg(λ) and Bp(λ)) in Eq. 5, and they are further modeled as 

   ( )      ̃  ( )                                                                     (8) 
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                                             (9) 
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X1-3 are the three scalar variables to be derived from a measured Rrs via SOA.   ̃  ( )   ̃  ( ) and   ̃ ( ) are 

spectral models (eigenvectors) determined based on either field measurements [7, 8, 21, 22] or “optimized” from a 

database [15].  

In general,  ̃  ( ) and   ̃ ( ) can be described as [1, 23]:  

  ̃  ( )   
  (    )     (11) 

  ̃ ( )  (
  

 
)
 

                 (12) 

The spectral slope (S) of   ̃  ( ) and the power coefficient (Y) are not constants for global waters. To reduce 

variables, S is set as 0.015 nm
-1

 in HOPE, but 0.0206 nm
-1

 in GSM; while Y changes with Rrs in HOPE, but is fixed 

as 1.03 in GSM. The reference wavelength (λ0) is generally set as 440 nm. 

It is much more difficult to precisely model spectral   ̃  ( ) [13, 22, 24, 25], although better fits could be achieved 

by increasing the number of free variables. As an example, we selected two simple models (where    ( ) is 

modeled with one variable) to evaluate their impacts: one is the   ̃  ( ) in HOPE, for which the spectral shape 

varies with the value of     (   ) (which is equivalent to chlorophyll concentration); and one is the   ̃  ( ) in 

GSM, which is constant for global waters. Figure 3 shows examples of the   ̃  ( ) for various eutrophication states, 

and the following provides a mathematic expression of the two approaches:    

HOPE: 

 ̃  ( )    ( )    ( )   ( )           (13) 

GSM: 

 ̃  ( )         ( )       (14) 

Using SeaWiFS band setup as an example, there are Rrs data at 6 bands (411, 443, 490, 510, 555, and 670 nm) that 

are generally useful for remote sensing retrieval of in-water constituents. Data at the longer wavelengths are used 

for atmospheric corrections. 

 

 

Figure 3. Comparison of the aph spectral shapes used in HOPE and GSM. #’s in the parenthesis indicate likely concentration of 

chlorophyll. 
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3.4 Optimization setups and software 

For all numerical solutions, a set of initial values (first guess) is required to start the process. In HOPE, the initial 

values of the three variables are not kept constant, but are estimated for each given Rrs(λ) as follow: 

       (
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)
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Note that X1 represents aph(440) in HOPE. For GSM, the same starting values are used, but in this case X1 represents 

Chl, so aph(440) is converted to Chl following Eq. 8 by dividing the corresponding chlorophyll-specific value 

(     (   )) at 440 nm. 

To generate physically meaningful solutions, boundaries of the three variables have to be set up, and they are (for 

HOPE): 

0.002 ≤ X1 ≤ 1.0  m
-1

; 

0.002 ≤ X2 ≤ 5.0  m
-1

; 

0.0001 ≤ X3 ≤ 0.5  m
-1

. 

When using the     ( ) model of GSM, while the boundaries for X2 and X3 are kept the same, X1 (for Chl) is set as 

0.02 ≤ X1 ≤ 100  mg m
-3

. 

To derive the 3 scalar variables for each Rrs, we used the Solver tool included in MS Excel. This tool uses several 

algorithms to find optimal solutions that include the Generalized Reduced Gradient Nonlinear Solving Method 

developed by Lasdon et al [26] and the Simplex LP Solving Method implemented by Fylstra et al [27].  

After the optimization is reached for each Rrs(λ), we not only recorded the     
    (the global minimum of δRrs), but 

also the difference between the derived spectral IOPs and the known spectral IOPs, which is calculated using Eq. 2, 

except that  ̃  ( ) is replaced by the spectral IOPs that formed the optimized  ̃  ( ), and Rrs(λ) is replaced by the 

corresponding known spectral IOPs. We calculated δa (for total absorption coefficient), δBp (for particle 

backscattering coefficient), δaph (for phytoplankton absorption coefficient), and δadg (for CDOM/gelbstoff 

coefficient), respectively. The wavelength range for these IOPs are from 410 nm to 555 nm, as there is limited 

information that can be derived in the longer wavelengths for most oceanic waters. These δIOP values provide a 

measure of the goodness of the derived spectral inherent optical properties.  

 

4. RESULTS AND DISCUSSIONS 

The surface shape of δRrs provides an indicator of the effectiveness of an SOA approach. For the spectral IOP 

models evaluated here, examples of the surface shapes are presented in Figure 4, while the overall distributions of 

    
    are shown in Figure 5.  

 

4.1 δRrs surface 

Figure 4 shows examples of δRrs (expressed as the percentage change of δRrs in relation to the percentage of change 

of aph, adg, and Bp) of both HOPE and GSM models. Generally, δRrs is monotonic in relation to Xi before and after 

δRrs reaches its global minimum. To understand the shape of δRrs, consider a simplified Rrs model where the total 

backscattering and total absorption spectra are modeled as one variable, respectively, then the model of remote 

sensing reflectance can be simplified as  

 ̃  ( )   ( )
   ( )    

   ( )    
         (18) 

Here, B’w(λ)and a’w(λ) are spectra associated with the backscattering and absorption coefficients of pure seawater, 

respectively, and are considered as constant; and Bnw and anw are two scalar variables for the backscattering and 

absorption coefficients of non-water constituents, respectively. A(λ) represents a combination of the spectral shapes 

of the two components and is constant for a given Rrs(λ). 
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Figure 4. (a) Examples of surface shape of dRrs resulted from change of Bp and adg.  (left) HOPE; (right) GSM; (b) Examples of 

surface shape of dRrs resulted from change of Bp and aph. (left) HOPE; (right) GSM. 

 

 

With such a simplified model, we examine the variation of Rrs resulting from the change of Bnw and anw. Note that, 

since the denominator of Eq. 2 is a fixed value for a given Rrs(λ) (does not change with Xi), the SOA is optimal 

when the following error-measure reaches a minimum, 

     ∑ ( ̃  ( )     ( ))
 

  
                        (19) 

And, 𝜟Rrs changes with Bnw through 
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while 𝜟Rrs changes with anw through 

     

     
   ∑ ( ( )

  ( )    

  ( )    
    ( ))

 

 ( )
  ( )    

(  ( )    )
 

  
           (21) 

For a given anw, there is a value of Bnw that makes 
     

    
  equal to zero (same for anw). When optimization is reached, 

both  
     

    
  and 

     

    
  reach zero. Furthermore, 

     

    
  is negative (negative slope) when Bnw is smaller than the 

optimized Bnw value, and      decreases with the increase of Bnw toward the optimum value; similarly, 
     

    
  is 

positive (positive slope) when Bnw is larger than the optimized Bnw value, and      increases with the increase of Bnw 

away from the optimum value. This monotonic behavior on either side of the global minimum just illustrates that 

there is no local minimum. 
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If anw (or Bnw) is modeled with two or more components (e.g., Eq. 13), the variation of      for each individual 

component becomes more complex. In particular, it will depend on whether the two (or more) components are 

spectrally distinguishable enough, otherwise the solution for these components will not be unique and thus the 

separation cannot be resolved (such as the separation of absorption between detritus and gelbstoff). Fortunately, the 

spectral shapes between aph and adg are significantly different in the 410 – 670 nm range, which ensures a general 

resolution of these two components, although uncertainty of each derived component varies case by case [28] and 

the impact on both  
      

     
  and 

      

     
 is strong (see Figure 4).  

4.2     
    distribution 

The spectral models for IOPs not only affect the shape of the error function, but also the value of      
    (a measure 

of closure). Figure 5a presents the     
    values from both HOPE and GSM models for the 500 simulated data, 

respectively, and Figure 5b shows the distribution of the     
    values. The X-axis of Figure 5a is roughly arranged 

in order from low-complexity, oligotrophic waters (a(440) ~ 0.016 m
-1

) to higher-complexity, eutrophic waters 

(a(440) ~ 3.2 m
-1

). Generally,     
    from the HOPE model is smaller than that from the GSM model (    

    is 

centered around 0.03 for HOPE while it spans between 0.04 and 0.10 for GSM). The     
    value from the HOPE 

model increases with the complexity of the water, which is expected because, for eutrophic waters, it is less likely 

that the assumed   ̃  ( ) matches perfectly the actual phytoplankton absorption spectrum. However, it is interesting 

and intriguing that the     
    value of GSM increases then decreases with the increasing of complexity. 

 

 

Figure 5. Values and distributions of     
    from HOPE and GSM. 

 

4.3       distribution 

After optimization was achieved, the derived spectral models of the IOPs were compared with the known IOP 

inputs used to generate the simulated Rrs spectra to measure the quality of the SOA retrievals. Different from the 

usual evaluation of retrieved IOPs at a single wavelength, the scheme here basically considers the IOP spectrum as 

a whole and evaluates this spectrum. This is valuable because that both the quantity and quality of the sub-surface 

light field is determined by the IOP spectra. Figures 6-9 present the values of      (spectra of total absorption, 

phytoplankton absorption, detritus-gelbstoff absorption, and particle backscattering, respectively) obtained from 

both HOPE and GSM.      is calculated following Eq. 2, but restricting the wavelength range to 410-555 nm, as 

the longer wavelength (670 nm here) has limited information of the active optical components. A few general points 

are observed for this dataset: 

a)      of HOPE is smaller than that of GSM 

b) For absorption spectrum, mean    is ~8% and smaller for low complexity (blue) waters (Figure 6) when 

HOPE is used 

c)      and      are much higher than   , and      of GSM is much higher than that of HOPE. This is probably 

because the   ̃  ( ) used in GSM not well represent the spectral shape observed from sample measurements 

d)     of HOPE is centered ~10% while     from GSM spans a range of ~10-50%. Again,     from HOPE 

increases with increasing complexity, but     from GSM slightly decreases then increases with water 

complexity. 
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Figure 6. Values and distributions of δa. 

 

 

Figure 7. Values and distributions of δaph 

 

 

Figure 8. Values and distributions of δadg 

 

 

Figure 9. Values and distributions of δBp 
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5. SUMMARY 

With a simplified model for remote sensing reflectance, we proved that the error function used to measure the 

goodness-of-fit is in general a monotonic function of backscattering and absorption before and after the 

optimization point (especially for blue waters with a spectral range of 400-700 nm). It is not possible for the SOA 

solution of such model to become trapped in a local minimum before reaching the global minimum. However, this 

ultimately depends on other factors such as the complexity of the models and water properties and the spectral 

range and resolution of the observed spectral Rrs. Further, we applied two spectral optimization algorithm (HOPE 

and GSM) to the IOCCG numerically simulated data and showed how the different model assumptions affect the 

closure between modeled and known Rrs, the surface shape of the error function, and the quality of SOA retrieved 

spectral IOPs. Results here further highlight the necessity and importance to develop and utilize appropriate models 

for the spectral shape of the IOPs for SOA schemes. 

 

ACKNOWLEDGEMENT 

Financial support for this study was provided by NASA and NRL. 

 

REFERENCE 

1. Gordon, H.R. and A. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery: 

A review. 1983, New York: Springer-Verlag. 44. 

2. O'Reilly, J., et al., Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 1998. 103: p. 24937-

24953. 

3. Lee, Z.P., K.L. Carder, and R. Arnone, Deriving inherent optical properties from water color: A multi-band 

quasi-analytical algorithm for optically deep waters. Applied Optics, 2002. 41: p. 5755-5772. 

4. Smyth, T.J., et al., Semianalytical model for the derivation of ocean color inherent optical properties: 

description, implementation, and performance assessment. Appl. Opt., 2006. 45(31): p. 8116-8131. 

5. Doerffer, R. and J. Fisher, Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters 

derived from satellite coastal zone color scanner data with inverse modeling methods. J. Geophys. Res., 

1994. 99: p. 7475-7466. 

6. Lee, Z.P., Visible-infrared Remote-sensing Model and Applications for Ocean Waters, in Department of 

Marine Science. 1994, The University of South Florida: St. Petersburg. p. 160. 

7. Bukata, R.P., et al., Optical Properties and Remote Sensing of Inland and Coastal Waters. 1995, Boca Raton, 

FL: CRC Press. 

8. Roesler, C.S. and M.J. Perry, In situ phytoplankton absorption, fluorescence emission, and particulate 

backscattering spectra determined from reflectance. J. Geophys. Res., 1995. 100: p. 13279-13294. 

9. Hu, C., et al. Application of an optimization algorithm to satellite ocean color imagery: A case study in 

Southwest Florida coastal waters. in Ocean Remote Sensing and Applications. 2002. Hangzhou, China: 

SPIE. 

10. Werdell, P.J., Global bio-optical algorithms for ocean color satellite applications. AGU EOS Transactions 

2009. 90(1): p. doi:10.1029/2009EO010005. 

11. IOCCG, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and 

Applications, in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P. Lee, Editor. 

2006, IOCCG: Dartmouth, Canada. p. 126. 

12. Brando, V.E. and A.G. Dekker, Satellite hyperspectral remote sensing for estimating estuarine and coastal 

water quality. IEEE Transcations on Geoscience and Remote Sensing, 2003. 41(6): p. 1378-1387. 

13. Devred, E., et al., A two-component model of phytoplankton absorption in the open ocean: Theory and 

applications. J. Geophys. Res., 2006. 111: p. C03011, doi:10.1029/2005JC002880. 

14. Lee, Z.P., et al., Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water 

properties by optimization. Applied Optics, 1999. 38: p. 3831-3843. 

15. Maritorena, S., D.A. Siegel, and A.R. Peterson, Optimization of a semianalytical ocean color model for 

global-scale applications. Applied Optics, 2002. 41: p. 2705-2714. 

16. Chami, M. and D. Robilliard, Inversion of Oceanic Constituents in Case I and II Waters with Genetic 

Programming Algorithms. Applied Optics, 2002. 41(30): p. 6260-6275. 

17. Liu, C.-C., C.-H. Chang, and C.-G. Wen, Integrating semianalytical and genetic algorithms to retrieve the 

constituents of water bodies from remote sensing of ocean color. Optical Express, 2007. 15(2): p. 252-265. 

18. Gordon, H.R., et al., A semianalytic radiance model of ocean color. J. Geophys. Res., 1988. 93: p. 10,909-

10,924. 



19. Sathyendranath, S., L. Prieur, and A. Morel, A three-component model of ocean colour and its application to 

remote sensing of phytoplankton pigments in coastal waters. Int. J. Remote Sensing, 1989. 10: p. 1373-1394. 

20. Pegau, W.S., D. Gray, and J.R.V. Zaneveld, Absorption and attenuation of visible and near-infrared light in 

water: dependence on temperature and salinity. Applied Optics, 1997. 36(24): p. 6035-6046. 

21. Lee, Z.P., et al., Hyperspectral remote sensing for shallow waters. 1. A semianalytical model. Applied 

Optics, 1998. 37: p. 6329-6338. 

22. Bricaud, A., et al., Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: 

Analysis and parameterization. J. Geophys. Res., 1995. 100: p. 13321-13332. 

23. Bricaud, A., A. Morel, and L. Prieur, Absorption by dissolved organic matter of the sea (yellow substance) in 

the UV and visible domains. Limnol. Oceanogr., 1981. 26: p. 43-53. 

24. Bricaud, A. and D. Stramski, Spectral absorption coefficients of living phytoplankton and nonalgal 

biogenous matter: A comparison between the Peru upwelling area and the Sargasso Sea. Limnol. Oceanogr., 

1990. 35: p. 562-582. 

25. Ciotti, A.M., M.R. Lewis, and J.J. Cullen, Assessment of the relationships between domininant cell size in 

natural phytoplankton communities and spectral shape of the absorption coefficient. Limnol. Oceanogr., 

2002. 47: p. 404-417. 

26. Lasdon, L.S., et al., Design and testing of generalized reduced gradient code for nonlinear programing. 

1976: Stanford CA. p. 51. 

27. Fylstra, D., et al., Design and Use of the Microsoft Excel Solver. INTERFACES, 1998. 28(5): p. 29-55. 

28. Lee, Z., et al., Uncertainties of optical parameters and their propagations in an analytical ocean color 

inversion algorithm. Applied Optics, 2010. 49(3): p. 369-381. 

 

 


