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Improved maximum cross correlation (MCC) techniques are used to retrieve ocean surface currents from the
sequential ocean color imagery provided by multiple newer generations of satellite sensors on hourly scales in
the Yellow Sea and the U.S. East and Gulf coasts. The MCC calculation is validated in a series of Bio-Optical
Forecasting (BioCast) experiments with predetermined synthetic velocities, and its products are evaluated by
examining the errors and biases with respect to the High Frequency Radar (HFRadar) measurements. The
root-mean-square (RMS) errors in our best current products derived from the overlap of satellite sensor swath
between the VIIRS sequential orbits are less than 0.17 m s−1 in the evaluation area outside of the Chesapeake
Bay. The most accurate current products are those derived from the imagery data of Rrs(551), Bb(551) and
C(551), while the image sequences of Bb(551) and Zeu_lee are identified as the most suited products for the
retrieval of currents because of their best production capacities of valid velocity vectors. Mechanisms between
the advective processes and the dynamic changes of bio-optical properties are discussed regarding the
performances of various color products on the retrieval of currents. Similarities of velocity distribution in the
retrieved vector arrays are collected across different MCC products derived from ocean color datasets that are
of different types and derived from different spectral channels of satellite overpasses. The inter-product
similarities themselves can be used to characterize the near-surface advection as well and usually have smaller
errors than each of the individual MCC currents. Moreover, efforts are also under way to improve the ocean
color derived currents by merging several of the MCC products with similarities to increase the total spatial
coverage. This study not only seeks the image-derived products best representing the sea surface current
structures in coastal areas, but also exploits how these currents can be improved or optimized to support the
ocean forecasts.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The retrieval of surface currents from time sequential satellite
imagery has been demonstrated using the maximum cross correlation
(hereafter MCC) method by many researches (Emery, Fowler, &
Clayson, 1992; Emery, Thomas, Collins, Crawford, & Mackas, 1986;
Matthews & Emery, 2009; Wahl & Simpson, 1989, 1990, 1991; Wu,
Pairman, McNeill, & Barnes, 1992; Zavialov, Grigorieva, MoLler,
Kostianoy, & Gregoire, 2002, etc.). Most of these studies were focused
on estimating currents from thermal imagery by the implementation
of MCC method and its variants. Although the basic rules are similar,
the detailed implementation of this method varied from case to case
in the documented studies. For example, Emery et al. (1992) applied
statistical significance and next-neighbor filter techniques to remove
fictitious current vectors due to the presence of residual clouds; Wahl
iences, University of Southern
1 786 376 6450.
and Simpson (1991) indirectly estimated the tangential component of
the total flow based on vector subtracting of the total flow and the
normal component of flow; Zavialov et al. (2002) developed amodified
version of the MCC method by allowing small displacements along
isolines to be detected between the paired images.

Besides the cross-correlation based methods, several other ap-
proaches have been proposed in the literature for extracting the near-
surface currents as well. The optical flow algorithm (Horn & Schunck,
1981) is a variational approach with a framework where the optical
flow is computed as the solution of a minimization problem. Cote and
Tatnall (1994) proposed a different pattern matching method named
as Hopfield neutral network to estimate feature movement, which
allows thedeformation of pattern title and is faster than the conventional
cross-correlation based methods. To overcome some weaknesses of the
MCC method (e.g. Kamachi, 1989 pointed out the deficiency of not
reconstructing rotational and deformational motion patterns), Bannehr,
Rohn, and Warnecke (1996) presented a non-statistical functional
analytic method to derive displacement vector field under the consider-
ation of neighborhood information.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.11.010&domain=pdf
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In someprevious studies (e.g. Chen,Mied, & Shen, 2008; Emery et al.,
1992; Vigan, Provost, Bleck, & Courtier, 2000a, 2000b), the derived
currents were compared to the ocean model velocity field to examine
errors and uncertainties. However, it must be noted that in many
situations the velocity outputs from ocean circulation models can be
misrepresented because most of the present-day operational ocean
models do not assimilate velocity observation and there are often
large inter-model differences in the velocity products of different
oceanmodels. Although the large regional scale ocean current observa-
tions are a limitation for validation of models especially in remote
regions, the development of the HFRadar network as a part of the U.S.
coastal observing system has somehow improved this situation. The
HFRadarmeasurement of sea surface currents is being used increasingly
in the U.S. coastal waters and regularly provides hourly velocity obser-
vation in several spatial resolutions. In the study of the U.S. coastal
waters, we no longer evaluate the derived currents with respect to the
ocean model currents but instead compare them to the velocities
derived by the HFRadar network. In our BioCast experiment, the image-
derived currents are directly compared to the pre-established synthetic
velocities to validate the retrieval procedure.

The time span between the sequential satellite images should
impact the frontal movements associated with ocean processes such
as tides, winds and eddies. In coastal areas, river plume fronts are rapid-
ly changing movements and require approximately ~1 hour separation
between images. Comparatively, gulf stream and large eddies can have
longer time periods, such as days, to response the surface currents.

Sea surface temperature (SST) is a physical parameter that has a
direct link to the advection processes and frontal movements and has
long been used to track and estimate the surface currents. However,
there are issues such as the diurnal heating of surface water, that have
influence on the location of frontal movement and thereby the ability
to derive currents. The SST products are also limited to time of the
year when there are significant gradients for frontal detection. In sum-
mer months, not only are there large temperature variations during a
full heating and cooling cycle, but also the strong radiance could signif-
icantly change the stratification near the sea surface and smooth out
many small-scale informationwhich are essentially preferred in execut-
ing a typical MCC calculation. In the Gulf of Mexico during the summer
months, for example, the SST is sometimes isothermal and can neither
resolve frontal location nor be used for defining the surface currents.

The tracking of ocean color fronts such as the chlorophyll fronts from
sequential satellite images can also be used to track water mass advec-
tion (Crocker, Matthews, Emery, & Baldwin, 2007; Garcia & Robinson,
1989; Svejkovsky, 1988). However, bio-optical products are also influ-
enced by non-advective processes such as growth and decay of phyto-
plankton blooms which can impact the gradients and frontal
locations and thereby the ability to estimate surface movements.
These bio-optical processes are dependent on the timing between the
sequential images and are assumed to be negligible with the hours
(Dickey et al., 1991), therefore the velocity products retrieved from
hourly sequential images can be used to represent the advective pro-
cesses. Besides chlorophyll, there are many ocean color products avail-
able which respond to different bio-optical and advective processes,
some of which may be more optimally suited for retrieving currents.
An inter-product comparison can help identify both the similarities
and differences of velocity distribution among various ocean color
derived velocity products. On the grounds that these separately de-
rived MCC products are used to represent the same surface advec-
tion, it is the inter-product similarities, instead of the differences,
that are more likely to link with the surface flow. Because of this,
we may not only use the similarities themselves to estimate advec-
tive processes besides the individual MCC products, but also merge
themultipleMCC products by keeping both their similarities and dif-
ferences to increase the total spatial coverage of velocity field. One
primary reason for carrying out this study is that we can take advan-
tage of the abundance of available ocean color satellite products to
support the timely forecasts and the coastal operations in need of
surface current information.

The present study uses the sequential ocean color products provided
by the Geostationary Ocean Color Imager (GOCI) and Visible Infrared Im-
aging Radiometer (VIIRS). The visible and infrared spectra measured
from these satellite instruments can provide information about dissolved
and suspended constituents in water that have optical properties. Many
of their remotely sensed products can help define the surface circulation
features and one effective way is to use these products to retrieve the
advective currents by image processing algorithms such as the MCC
method. The objectives of this paper include the following: 1) applying
MCC to various ocean color products and evaluating the derived currents
to define the optimum products which are best related to surface advec-
tion; 2) testing the MCC algorithms for ocean color products using syn-
thetic datasets that are initialized with chlorophyll data and based on a
forecast circulation model; 3) demonstrating the retrieval of currents
from the VIIRS overlaps; 4) determining the uncertainty and RMS error
of the derived currents by comparing with the observed currents from
HFRadar network; 5) illustrating that similarities of velocity distribution
can be collected through different MCC currents derived from different
ocean color products and how these MCC currents with similarities
may be merged to increase the total spatial coverage.

In Section 2, the satellite imagery data and the velocity estimating
methods are briefly introduced. Case studies of the BioCast experiment
follow in Section 3 to validate the MCC retrieval procedure. Section 4
gives an example to illustrate that the high similarities of velocity distri-
bution can be collected between the currents derived from different
ocean color products. The evaluation of MCC products in the U.S. East
and Gulf coastswith respect to the HFRadarmeasurements is presented
in Section 5. Section 6 describes some techniques of merging multiple
derived currents to improve the vector coverage of flow field. The
concluding remarks are given in Section 7.

2. Data and approaches

2.1. GOCI and VIIRS satellite imagery

The ocean color imagery used in this study is obtained from the
remotely sensed data of the GOCI and VIIRS, which are capable of provid-
ing multiple looks per day for each of a number of different types of bio-
optical properties. GOCI is a sensor on a Korean telecommunications
satellite (i.e. the Communication, Ocean and Meteorological Satellite-1,
COMS-1); VIIRS is a sensor on the SuomiNational Polar-Orbiting Partner-
ship (S-NPP) satellite. The GOCI is the world's first geostationary orbit
satellite sensor over the Yellow Sea for detecting, monitoring and
predicting short-term biophysical phenomena. The target area is
2500 km × 2500 km and centered at 130°E, 36°N; a map of its cover-
age can be found at http://kosc.kordi.re.kr/oceansatellite/coms-goci/
specification.kosc. Hourly data for 9 am–3 pm daily are acquired in
multispectral bands from 412 to 865 nm and with a spatial resolution
of about 500 m. The GOCI can capture the hourly images eight times
per day, which is very useful to learning the evolution of the dynamic
changes in water masses and bio-optical properties, particularly in
coastal waters where the river discharge, tides, winds, and the shape
of land and seafloor all play a role in shaping the surface flow.

The VIIRS is a polar orbiting satellite sensor with a 22-band radiom-
eter for collecting imagery and radiometric measurements of the ocean
in the visible and infrared bands of electromagnetic spectrum. The VIIRS
orbit provides an overlap of the sensor swath so that multiple looks per
day and bio-optical products can be collected over the same ocean
(Arnone et al., 2013). The overlap between VIIRS sequential orbits is
about 100 min and based on the orbital progression. The overlap of
VIIRS at the U.S. East coasts does not occur every day. There is enough
overlap in this area approximately every 2 days. In Northern hemi-
sphere the spatial resolution increases with latitude and is approxi-
mately 750 m at nadir in the U.S. East and Gulf coasts but 1.6 km at

http://kosc.kordi.re.kr/oceansatellite/coms-goci/specification.kosc
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the edge of the swath. The VIIRS has a 3040 km swath and the orbital
overlap is determined by the edge of swath. The VIIRS sensor has the
uniquely increased ability to retain spatial resolution of 750 m at
NIDAR to small spatial increase at higher swath angles (Baker, 2011).
An example of VIIRS overlap is shown in Fig. 1.

The GOCI and VIIRS produce images from their data which are then
converted into geophysical data products. The satellite data was proc-
essed using the NASA based software called nL2gen (Werdell et al.,
2013) to remove the atmosphere contamination, surface glints, etc.
The nL2gen uses multiple channels. The derived ocean color products
include the normalized water leaving radiance Lwn at several wave-
lengths. These spectral Lwn channels are used to derive several in-
water bio-optical properties (Lee, Carder, & Arnone, 2002). The sensed
data of the GOCI and VIIRS provide a series of ocean color products
that are of different types and derived from multiple spectral channels.
These products are presented in Table 1, inwhich the special attention is
given to the 551 nm products. The VIIRS channel M4 is centered at vis-
ible 551 nm; theGOCI band 4 is also centered at 551nm. After the atmo-
spheric correction and ocean color processing produces, the Lwn(551)
would be seen directly from overhead and not for an off angle. The
Lwn at the different channels provide a spatially normalized product
which is used for quantitative comparison across the scene. In coastal
areas where there are large concentrations of inorganic particles
(suspended sediment), there is increased scattering which is detected
in the Lwn(551) and the backscattering products. A hypothesis is that
some of these products are better indications of the water mass advec-
tion than the others. For example, the blue channels were selected to
define the bio-optical response of chlorophyll absorption whereas the
longer green and red channels characterize the particle scattering prop-
erties. We expect that the green 551 channel has a signature to better
characterize and identify water masses using the particles scattering
compared to the red channels and is better to define advection than
other bio-optical properties used in ocean color.

For bothGOCI andVIIRS, the ocean color productswere remapped to
a specific projection (level 3) with equal grid spacing. This was per-
formed to provide spatially consistent grids across the swath of the sat-
ellite. The MCC analysis is carried out on remapped images.

2.2. MCC approach

The MCC method for determining surface currents from time
sequence images is based on statistically characterizing the spatial gra-
dients between images. It calculates the displacement of small regions
Fig. 1.Anexample of theVIIRS overlap illustrating that sequential imagery datawith ~100min s
swath. The boundary of the overlapped area is indicated by the dashed lines, which are the sam
of patterns from one image to another to find the movement of surface
features by locating the correlation peaks in windowed portions of the
source images. By statistically characterizing the spatial gradient of
one image and locating the position of the similar statistics in the second
image we can track the location of a water mass from one time to the
next. The displacement during the time interval provides both themag-
nitude and direction of the surface current. Themethod requires identi-
fying the correct spatial (pattern box size) variability and the pattern
difference requires variance to accurately locate the movements.
These statistics also provide methods to track the level of uncertainty
of the derived current. The schematics of the MCC method are illustrat-
ed in Fig. 2. More details of this method can be found in Emery et al.
(1986), Garcia and Robinson (1989), Wahl and Simpson (1990), and
Wu et al. (1992).

Assuming that there is a patternmovement ofm pixels in x-direction
and n pixels in y-direction from the first image to the second, the cross-
correlation coefficient between the two pattern tiles is determined by

k ¼

X
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X
j
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where φ1 (φ2) is the value of the target variable on the first (second)
image; i and j the indices of the pattern tile on the first image; i + m
and j + n the indices of the corresponding pattern on the second
image; and φ1 (φ2) the tile-wide mean on the first (second) image.

The results of the MCC algorithm provide several outputs, which
include the direction and magnitude of the surface current. In addition
to the pattern similarity in the matchup statistics between the two
images, the level of cross-correlation represents a degree of confidence
in the retrieved currents. If the statistics fall below a certain threshold
then a surface current is not determined. This provides a method to
qualify the current product.

To best estimate the near-surface currents, the ocean color imagery
data should be ideally free of clouds and other contamination, but it
is not usually possible. The scenes were processed using standard
(Gordon & Wang, 1994) atmospheric correction; standard flags were
used tomask interference from land, clouds, sun glint, and other potential
disturbances to the radiance signal. These are based on thresholds in the
865 nm channel and are standard processing methods used in NASA
processing (Werdell et al., 2013). Technically, the MCC approach cannot
get any valid velocities if the area is covered by heavy clouds. However,
for some sparsely distributed cloudy pixels, we may apply low pass filter
eparationmaybe available in the overlapped region of thepolar orbiting SNPP-VIIRS sensor
e on both images.



Table 1
Selected ocean color products of the GOCI and VIIRS in the present study.

Satellite sensor GOCI VIIRS

Spatial resolution (m) 500 750
Temporal resolution (min) 60 100
Ocean color products Chl, Lwn(551) Rrs(410), Rrs(443), Rrs(486), Rrs(551), Rrs(671), At(551),

Bb(551), C(551), Chl, Kd(490), salinity, Zeu_lee

Abbreviation and description of the above-presented ocean color parameters:
At(551): total absorption at 551 nm,QAAalgorithm; Bb(551): total backscatter at 551 nm,QAAalgorithm; C(551): beamattenuation at 551 nm,QAAalgorithm; Chl: chlo-
rophyll a concentration; Kd(490): diffuse attenuation coefficient at 490 nm,KD2algorithm; Lwn(551): normalizedwater-leaving radiance at 551 nm;Rrs(λ) (λ = 410, 443,
486, 551, 671): remote sensing reflectance at 410, 443, 486, 551, and 671 nm; Salinity: salinity— based on colored dissolved organic matter, Ladner algorithm; Zeu_lee:
euphotic zone depth, Lee algorithm (Lee et al., 2007).
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to smooth out the bad values before the MCC calculation is conduct-
ed. The smoothing of source images can generally increase the pro-
duction of valid vectors and is routinely used in our studies. Another
pre-processing technique that we used is the mesh refinement with
interpolation techniques such as the bi-linear interpolation that will be
discussed later in the section of BioCast experiment.

An unfiltered current product retrieved by MCC algorithm may
contain plenty of unrealistic vectors. Diagnostic analysis suggests
that these vectors are possibly caused by several factors including
the following: 1) the bad pixels existing in satellite source imagery,
2) themisrepresentation of somemovement of pattern features partic-
ularly in the case that there are large angular displacements due to the
rotational motions of layered fluids, and 3) the fact that the real sea
surface currents themselves have plenty of turbulent features. To weak-
en the negative aspects in the derived currents, we have essentially
enabled several types of filters: the land mask filter screens out the
vectors on land areas; the neighborhood filter double checks whether
a vector is physically compatible with the other vectors calculated on
the adjacent pixels; the gradient filter rejects the vectors retrieved
from pattern pairs that do not have sufficient spatial and temporal vari-
ability; the MCC threshold filter discards some of the results retrieved
Fig. 2. Schematics of the MCC algorithm. Two sequential ocean color images are used to estimat
tile at T1. On image-2, the pattern tile is allowed to move away from the target pixel in both x-
pattern at T2. Assuming that the bold solid box in blue has the largest cross-correlationwith resp
T2 − T1, the travel distance and the travel direction. The shadow area in Fig. 2b is the search w
from weakly correlated local patterns by excluding the vectors with
peak correlation values kmax smaller than the cutoff threshold kσ.

2.3. Metrics for quantifying the skills of the derived current

The evaluation of the derived currents for differentMCC criteria and
ocean color sequences was based on:

• Number of current vectors retrieved that satisfy the criteria kmax≥ kσ:
The more vectors retrieved the better the current product is. The
ocean color images with the capacity of producing larger quantity of
valid vectors are more suited for the retrieval of currents.

• Variance of velocity difference var(U1 − U2): This parameter measures
the similarity level of velocity distribution between two currentsU1 and
U2, which are derived from two different color products such as Chl and
Lwn(551).

• RMS error: This parameter is ameasure of accuracy and represents the
sample standard deviation of the differences between MCC derived
currents and those observed by HFRadar.

• Bias: A statistic measure of how the derived currents are systematically
different from the observed currents. A small bias can guarantee
e surface currents by theMCCmethod. The gridded box on image-1 is the original pattern
and y-directions. The dashed line boxes in blue are the possible new states of the origina
ect to the original pattern, the advective velocity is then determined by the time separation
indow.
l
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that the derived currents are not unrealistically overestimated or
underestimated.

Particularly, the RMS error and bias are calculated as,

φRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

φ̂i−φið Þ2
vuut and φbias ¼

1
N

XN
i¼1

φ̂i−φið Þ; ð2Þ

where N is the number of pixels loaded with both the observed vectors
and the vectors retrieved from MCC; i the index of pixel; φ̂ the scalar
value extracted from the MCC current product (specifically, φ̂ may be
the magnitude, direction, u-component or v-component of the surface
current); and φ the observed value of φ̂.

3. BioCast experiment

The BioCast system has been used to forecasting the ocean's optical
environment (Jolliff et al., 2014) and the nowcast–forecast studies of
ocean color data streams in physical circulation models (Jolliff, Smith,
Ladner, & Arnone, 2014). We apply the BioCasting technique to a valida-
tion study in which a synthetic dataset was established to test the MCC
algorithm on ocean color products. A surface circulation model with a
specific constant current vector was used to advect a selected satellite
product (such as Chl) to obtain a sequence of synthetic forecast states
with 100 min separation. By using these states as an artificial image
sequence, the MCC was applied to determine if it could retrieve the
constant vector field. The synthetic velocities are functionally the pre-
established observation, and we can thus use them to quantify the
accuracy of the velocities derived from the artificial image sequence
as well as to validate the calculation.

3.1. Case studies

Wepresentfive test cases built from the BioCast software, in each case
the Chl fieldmoves with a constant synthetic velocity so the continuity is
automatically satisfied in water masses. Specifically, multiple constant
velocities are separately loaded to a given initial field of Chl to yield
several different artificial image sequences. The synthetic velocities in
our BioCast experiment are listed in Table 2. The same initial field,
which is a real Chl image captured from the VIIRS, is used here to obtain
all the five artificial sequences. The spatial and temporal resolutions are
1000 m and 100 min, respectively. An artificial image sequence in
the Northern Gulf of Mexico is shown in Fig. 3 for u = 0.5 and
v = −0.5 m s−1 (i.e., case 3 in Table 2) as an example. The image
sequence may also be recognized as a consequence of fixed lands
superimposingwith an ocean colormap thatmoves at a constant veloc-
ity. The image-derived currents byMCC are presented in Fig. 4, inwhich
the retrieved vectors are visually realistic with respect to the corre-
sponding predetermined velocities.

3.2. RMS error and bias

Weexamine theRMSerrors and biases of the image-derived velocity
products that are described in Table 2. The results are presented in
Table 3 for the u- and v-components, in which the RMS errors are less
than 0.1 m s−1 in all the studied cases and the biases are within
Table 2
Predetermined velocities in the five case studies of the BioCast experiment. The direction
angle θ is measured from the positive x-axis in the counterclockwise direction.

BioCast test 1 2 3 4 5

Zonal velocity u (m s−1) −0.2 0.2 0.5 −0.5 0.5
Meridional velocity v (m s−1) −0.2 0.2 −0.5 0.5 0.001
Direction of velocity vector θ (°) 225 45 315 135 0.1
±0.03 m s−1. The results of the magnitude and direction are
given in Table 4.

In a MCC retrieval procedure, both the magnitude and direction are
restricted by the spatial resolution of the source images. The displace-
ment of pattern center must have its initial position at one pixel grid
on the first image and the final position at another pixel grid on the
next image. Due to the fact that the pixel grids are discrete in space,
this intrinsic constraint could somehow lead to systematic errors due
to the limited pixel resolution. To weaken this limitation, we tentatively
refine the source images by reducing the pixel size to half of the original
and then redo theMCC calculation. Subsequently, the errors in theMCC
currents derived from both the refined and non-refined images are
presented in Fig. 5 to show the impact of mesh refinement. The curves
in Fig. 5b exhibit quantitatively similar behaviors as in Fig. 5a calculated
on the original meshes. For the velocities u and v, it is clear that the bi-
linear interpolation based mesh refinement does not reduce the RMS
errors on almost all the cases, but the overall biases are weakened from
[−0.032, +0.030] to [−0.015, +0.015] m s−1 as shown in Fig. 5c and
d. The largest bias correction occurs in test 1 when u = −0.2 and
v=−0.2 m s−1. In this case, the refinement of source imagery reduces
the bias from +0.029 m s−1 to +0.009 m s−1 with a correction of
~69%. Moreover, the RMS errors and biases of the velocity magnitude
and direction are presented in Fig. 5e through h, which again shows
that the bi-linear interpolation corrects the biases but not the RMS errors.
This is probably because the Chl values on the “newpixels” resulting from
interpolation might not be able to accurately represent the pattern
features statistically matched up with the remotely sensed values on the
original pixels. The bi-linear interpolation, which is one of the basic
resampling techniques, does not reduce the error here in theMCCderived
currents, but by no means that other non-linear interpolation algorithms
cannot yield an error reduction. In a companion study, for example, we
have been attempting to calculate the surface currents from the refined
images produced by band-sharpening techniques and the results will be
reported separately when completed. As a generalization, Fig. 5 indicates
that the MCC algorithm yields the RMS errors of less than 0.11 m s−1 in
velocity components and less than 12° in velocity direction for sequential
images with 100 min separation when the template size and axial
searching distance are set to 6 × 6 pixel and 12 pixel, respectively.

4. Similarity in the MCC currents derived from different ocean
color products

Satellite remote sensing can providemany ocean color products that
are of different types and derived from different spectral channels. The
imagery of each of the many products may be separately used to
retrieve the surface currents. Due to the fact that every individual
color product may theoretically obtain a deterministic derived velocity
product for its own, there is the question of which derived product
should be chosen to represent the surface flow out of themany velocity
products that are usually sort of different from each other. To reduce the
overall risk of making a particularly poor selection, we need to investi-
gate the similarities and differences of velocity distribution between
the multiple derived currents, which is particularly necessary if there
are no observed currents available. As mentioned in the Introduction
section, because the different MCC products are intentionally obtained
to represent the same surface flow, it is the inter-product similarities,
instead of the differences, that are more likely to stand for the surface
advection. If high similarities can be identified between the different
current products, then these similarities should be able to characterize
the surface flow, and the individual products with similarities are
potentially good candidates as well for representing the surface flow.
Assuming that there are two currents derived from two different ocean
color products; if the two derived currents are completely different,
then at least one of the two ocean color products is not suited for the
retrieval of currents because the two derived currents are tentatively
representing the same thing. Belowwe take twoMCC products retrieved



Fig. 3. Artificial image sequence constructed in the BioCast experiment for u=+0.5 and v=−0.5 m s−1 at the time of T=(a) 0, (b) 100, (c) 200, (d) 300, (e) 400 and (f) 500min. The
spatial resolution of the images is 1000 m.
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from the GOCI's Chl and Lwn(551) imagery as an example to show the
similarity existing between the MCC currents resulting from different
ocean color products.

The Chl fields In Fig. 6a and c are presented for 02:16 UTC and 03:16
UTC on September 6th, 2011. Heavy clouds are observed in the west
coast particularly in the near-shore regions of Bo Hai Bay and south of
35.5°N. The relatively larger spatial gradients are distributed in the east
coasts in comparison to the open ocean. The currents estimated by
MCC algorithm are shown in Fig. 6e, in which plenty of the MCC current
vectors are northwards in the north of the Yellow Sea and along the east
0.5 (m/s)

Fig. 4. Image-derived currents by the MCC algorithm from the artificial image sequence
corresponding to u = 0.5 m s−1 and v = −0.5 m s−1. The vector field is bin-averaged
from a total of 114,907 valid vectors. The threshold kσ = 0.8 is used in the MCC calculation;
the pattern tile size is 8 × 8 pixel and the maximum axial searching distance is 4 pixel. The
constant vector field is obtained with RMS errors less than 0.1 m s−1.
coast, while those in the areas near the southern corner of the Korean
Peninsula are southeastwards. These are in visual agreement with the
movement of pattern features between the two Chl images.

The sameMCC calculation is also applied to the sequential images of
Lwn(551), and the retrieved currents are shown in Fig. 6f. Although the
Lwn(λ) can be used to estimate the Chl (Gordon et al., 1983), it is neither
considered as organic matter like Chl nor linearly related to the Chl.
Particularly, the Chl derived currents and the Lwn(551) derived currents
are considered as two independent velocity products because they are
separately calculated from their own image sequences without using
any relations between the Chl and Lwn(551). A quantitative measure of
how well these two MCC currents agree with each other can be seen in
Fig. 7, where we show the number of vector pairs as a function of
the velocity differences Δu = u(Chl) − u(Lwn(551)) and Δv =
v(Chl) − v(Lwn(551)). The currents in Fig. 6e and f have 84,113
and 190,207 valid vectors respectively retrieved from the satellite
images with 1666 × 1166 pixels. The vector pairs entering the compari-
son are determined only at a limited part of these pixels. Each compared
vector pair includes one valid vector from the Chl currents and the other
from the Lwn(551) currents at the same time. A total of 4285 vector pairs
are identified and most of them are distributed in the narrow range of
(−0.1,+0.1) m s−1 of Δu and Δv (Fig. 7), which indicates that there
are high similarities between the velocity field derived from Chl images
and the one from Lwn(551) images. The two distribution curves are not
completely symmetric because the two derived currents have different
domain-wide biases. The variances of the velocity difference between
the two MCC products are 0.0132 m2 s−2 in u-component and
0.0074 m2 s−2 in v-component, which reconfirm that these two vector
fields are very similar one to the other. Also, because of such a high



Table 3
RMS errors and biases of velocity components in the MCC derived currents.

BioCast test Currents derived from original imagery Currents derived from interpolated imagery

uRMS

(m s−1)
vRMS

(m s−1)
ubias
(m s−1)

vbias
(m s−1)

uRMS

(m s−1)
vRMS

(m s−1)
ubias
(m s−1)

vbias
(m s−1)

1 0.032 0.033 +0.030 +0.029 0.058 0.057 +0.013 +0.009
2 0.031 0.028 −0.030 −0.032 0.057 0.055 −0.012 −0.015
3 0.092 0.045 +0.008 +0.022 0.108 0.086 −0.006 +0.009
4 0.043 0.085 +0.021 +0.003 0.089 0.103 +0.015 −0.007
5 0.018 0.001 −0.009 −0.001 0.055 0.011 −0.007 −0.001
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similarity existing between the two independent currents retrieved from
different ocean color products, there are plenty of matched features that
can be collected over the two currents to characterize the real ocean.

Not only do the inter-product similarities of velocity distribution
exist between the MCC products of Chl and Lwn(551), but they also
exist between many other ocean color derived currents such as those
of Bb(551), C(551), Zeu_lee, and Rrs(551). Specifically, a hypothesis is
that these similarities of velocity distribution across multiple MCC cur-
rents resulting from different ocean color products are physically linked
with the advective processes and thereby can largely represent the sur-
face flow in the real ocean. The less dependent are the two different
ocean colors in relation to each other, the more accurately these inter-
product similarities may be expected to represent the surface flow.
Because the non-advective biological processes are assumed to be negli-
gible on hourly scales, it is clearly evident that these inter-product simi-
larities are dominated by the physical near-surface advection, especially
if a multiple of several independent MCC products are involved.
5. Results in the U.S. East and Gulf coasts (USEGC)

5.1. Evaluation with respect to the HFRadar observation

In the past few decades, scientists have been using the HFRadar as a
new tool to map the sea surface currents in coastal waters up to 200 km
off the shore (Chapman et al., 1997; Glenn, Dickey, Parker, & Boicourt,
2000; Paduan & Graber, 1997; Parks, Shay, Johns, Martinez-Pedraja, &
Gurgel, 2009; Shay, Martinez-Pedraja, Cook, & Haus, 2007). To examine
the accuracy of ourMCC products with respect to the observation provid-
ed by the HFRadar, we focus on several selected sub-regions in the East
and Gulf coasts where both the VIIRS overpasses and HFRadar currents
are frequently available. Sea surface velocities are measured by the
HFRadar through a distributed network, and the synoptic maps of cur-
rents are produced in near real-time throughout the coastal waters with
the quality controlmetrics implemented at various stages of data process-
ing. Data in hourly scales are regularly available in several spatial resolu-
tions: 500 m, 1 km, 2 km and 6 km (http://cordc.ucsd.edu/projects/
mapping/maps/), while the coverage and availability of the HFRadar cur-
rents are not identical over the different resolutions in space. In the
present study, we mainly use the 6 km measurements to evaluate the
performances of the MCC estimated currents that are possibly subject
to various factors and uncertainties such as the intrinsic parameters
Table 4
RMS errors and biases of magnitude and direction in the MCC derived currents.

BioCast test Currents derived from original imagery

|U|RMS

(m s−1)
θRMS

(°)
|U|bias
(m s−1)

θb
(°

1 0.038 5.1 −0.041 +
2 0.034 4.7 −0.042 −
3 0.073 6.1 −0.006 +
4 0.068 5.7 −0.009 −
5 0.018 0.2 −0.009 −
prearranged in the algorithm, and the type and quality of the source
images.

Fig. 8 presents an example of the HFRadar currents versus the cur-
rents estimated by the MCC algorithm in the open water outside of the
Chesapeake Bay. The dashed line box describes the area shared by both
the HFRadar observed currents and theMCC derived currents. The veloc-
ity distributions of the two current products are clearly different from
each other, but there are still quite a few overlapped grids on which
velocity vectorsmay be compared grid by grid between the two currents.
Because the two currents have different coordinate grids, the HFRadar
observations are bi-linearly interpolated to the locations of MCC vectors
before the comparison is executed.

As mentioned in Section 2, the VIIRS has about 20 different ocean
color products as potential candidates for the retrieval of currents. The
large family of VIIRS ocean color products provides plenty of informa-
tion about scattering, absorbance, and resulting optical properties of
water, such as color and transparency. Some of these candidate prod-
ucts are heavily influenced by biological processes such as Chl. There
are also some in-organic features (e.g., surface salinity) and other prop-
erties that are integrated with both organic and in-organic matters,
including the Bb, At, Zeu, Rrs and so on. These products present different
features of scattering and particle absorption. Linear dependences are
not generally observed between one and the other in any two out of
the ~20 ocean color products. Other than the fact that theMCC currents
retrieved fromdifferent ocean color imagery are independent orweakly
dependent of each other, there are also the questions of which color
products are best suited to estimate the surface currents and why
some are better than the others.

Presented in Fig. 9a and b are the RMS errors in multiple MCC
velocity products with respect to the HFRadar currents on several
selected days in 2013. The RMS errors in the model currents of the
1/12° operational global Hybrid Coordinate Ocean Model (HYCOM) are
also included. The statistics are calculated in the domain approximately
ranging from 78.1°W to 71.9°W and 33.6°N to 39.8°N. A total of seven
selected ocean color products are compared one to the others, including
At(551), Bb(551), C(551), Chl, Kd(490), Rrs(551), and Zeu_lee. The top
three products with the leading performances can be identified as the
Rrs(551), Bb(551) and C(551). Particularly the currents of the Rrs(551)
have the smallest RMS errors throughout almost all the days in both
the zonal and meridional velocities. Given that the flow speed in the
region outside of the Chesapeake Bay can usually go up to ~1.5 m s−1

and the average speed can exceed 0.5 m s−1, the overall performances
Currents derived from interpolated imagery

ias

)
|U|RMS

(m s−1)
θRMS

(°)
|U|bias
(m s−1)

θbias
(°)

0.1 0.057 11.9 −0.009 +0.8
0.2 0.055 11.9 −0.014 −0.3
1.3 0.096 8.5 −0.004 −0.1
1.1 0.091 8.6 −0.008 −0.3
0.1 0.055 1.5 −0.007 −0.1

http://cordc.ucsd.edu/projects/mapping/maps/
http://cordc.ucsd.edu/projects/mapping/maps/


Fig. 5. RMS errors and biases in the MCC currents retrieved from a total of five artificial image sequences loaded with different predetermined velocities (see details in Table 2). The
horizontal axes are the test IDs from 1 to 5.
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of the seven selected ocean colors are all excellent by yielding the RMS
errors smaller than 0.17 m s−1. It is also clearly evident that the perfor-
mances in our three best products are way better, particularly in the
meridional velocities, than the performance of the model surface cur-
rents provided by the global HYCOMoperational run that has assimilated
all the available satellite altimeters, satellite and in-situ surface tempera-
ture as well as in-situ vertical temperature and salinity profiles. Compar-
atively, a color product that focuses more on particle scattering may
define the more accurate currents than a biological process dominated
ocean color product. This is probably because the particles, particularly
the suspended constituents, can physically follow better with the advec-
tivewatermass transport and thus themigration of particles can bemore
directly reflected in the associated optical features. As for a biological
property like the chlorophyll that actively absorbs energy from lights,
the bloom and delay are not only closely related to the bulk flow of
surrounding waters but also subject to other independent factors such
as the change of temperature profile. In Fig. 9c and d, the RMS errors
are compared between two established MCC products (i.e. the derived
currents of Bb(551) and Rrs(551)) and a new joint product loaded with
the inter-product similarities that are collected between the currents of
Bb(551) and Rrs(551). To build this joint product, the velocity vectors
from the two MCC currents are compared with each other on every
pixel within the domain. The vector pairs with the magnitude difference
smaller than 0.3 m s−1 and the direction difference smaller than 50° are
identified as “matched” features and then assembled into a flow field as a
subset currents composed of the inter-product similarities. The error
trends of the joint flow field are shown as bold solid lines in red in
Fig. 9c and d, indicating that the subset currents integrated with the
matchup features have smaller errors than eachof the individual products
that are being compared. In addition to selecting the individual derived
currents with top performances for our needs, it is also evidently possible
that the joint product loaded only with inter-product similarities could
represent better the observed currents than the best individual products.
The constraints ofΔ|U| b 0.3m s−1 andΔθ b 50° are tentatively used here
as the criteria to determine whether or not a pair of vectors is in good
agreement in the cross-product comparison, and the vector pairs with
large inconsistencies are excluded in the merging process. The levels of
these constraints may be increased to further reduce the RMS errors.
The differences between the joint subset currents and each single deter-
ministic (one member) currents are due to the uncertainty in the MCC
retrievedproducts and the inter-product variabilities can reflect the levels
of uncertainty.

Satellite retrieved currents from sequential images of ocean color
have a major limitation. Estimating current based on surface fronts
does not account for the vertical motion. Subduction and upwelling
processes can affect the frontal movement, which will result in uncer-
tainty in the derived surface currents. This limitation represents a non-
conservation of mass but is not represented in the surface front location
during the estimation of currents. Quantifying the impact onderived cur-
rent products is difficult and remains problematic in the MCC approach.
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Fig. 6. Sequential GOCI satellite images of (a) Chl at 02:16 UTC, (b) Lwn(551) at 02:16 UTC, (c) Chl at 03:16 UTC, (d) Lwn(551) at 03:16 UTC on 6 September 2011. The currents in (e) are
derived from the Chl images (a) and (c). The currents in (f) are derived from the Lwn(551) images (b) and (d). The velocity fields in both (e) and (f) are calculated byMCC algorithm and
bin-averaged from a total of 84,113 and 190,207 valid vectors, respectively. The threshold cross-correlation coefficient kσ=0.8 is used in theMCC calculation; the pattern tile is 6 × 6 pixel
and the maximum axial searching distance is 10 pixel. The source images of both the Chl and Lwn(551) have 1666 × 1166 pixels in space with a resolution of approximately 500 m.
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Such a limitation is also true in the currents derived fromSST fields in the
documented studies.

Because the calculation of cross-correlation coefficient is character-
ized with the pre-established pattern feature and searching criterion
(see Eq. 2), the sizes of pattern and search windows may significantly
influence on the performance of MCC algorithm during the retrieval of
currents. Fig. 10 shows the change of RMS error with the size of search
window in the Chesapeake Bay coastal waters for the Bb(551) and Chl.
The trends for both the u- and v-components are presented in the same
plot. The search window defines the area where one may expect to find
the new location for the original pattern tile after a time delay. It is clearly
seen that the currents derivedwithin a larger searchwindow (i.e. the one
with an axial searching distance of 18-pixel) almost always achieves a
smaller RMS error, but the error reduction is small when the searching
distance is increased from 10-pixel to 18-pixel. Such an error reduction
is easy to understand, because there might be some cases in which the
best cross-correlations are found outside of the 10-pixel searching area
but still within the 18-pixel area. However, the computational cost will



Fig. 7. Comparison between theMCC currents derived from Chl and Lwn(551) satellite image
sequences. Each of the compared vector pairs has one valid vector from the Chl currents and
the other from the Lwn(551) currents available on the same pixel. A total of 4285 vector pairs
are identified from the two MCC products. The variances of the velocity difference between
the twoMCCproducts are 0.0132m2 s−2 in zonal velocity u and 0.0074m2 s−2 inmeridional
velocity v. The R-squared value is 0.70 in u and 0.86 in v when u(Chl) = u(Lwn(551)) and
v(Chl) = v(Lwn(551)) are used as the regression lines.
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increase exponentially when the searching distance is increased. There-
fore, it is necessary to balance carefully the error reduction and the
additional computational effort. Across the several tested days, the error
trends of Chl are completely different to those of Bb(551). This is because
the Chl is a typical biological property, while the Bb(551) is primarily
focused on particle scattering. On the other hand, the trends with the
larger searching distance follow pretty well those with the smaller
searching distance, which implies that these error trends are more likely
to be dominated by the type of image instead of the searching criterion in
a MCC calculation.

The determination of the optimum template pattern size is related to
several important factors. In general, a larger template contains more
information for tracking the changes of bio-optical properties and is
0.5 (m/s)

Fig. 8. The comparison of the HFRadar currents and the MCC currents retrieved from the
Bb(551) color product in the coastal region outside of the Chesapeake Bay during 17:04–
18:44 UTC on June 1st, 2013. The dashed line box describes the area shared by both the
HFRadar and the MCC derived currents. The vectors are bin averaged. The bin size is
0.2° × 0.2°, which is approximately 18 × 18 km in this area. In the evaluation of the
USEGC velocity products, the RMS errors and biases are calculated over a large data sample
before the bin averaging.
more statistically significant. However, using the larger template also
increases the possibility to include more complicated flow structures
such as the rotation and shearing between the fluid layers inside the
pattern tile itself. Linear motions of the pattern tile are strongly preferred
by theMCC algorithm to obtain a relatively high accuracy in the derived
currents. Angular displacement caused by the rotational motions of pat-
tern tile will generally lead to large errors, therefore the strong vorticity
effects must be avoided inside the pattern templates as much as possi-
ble. We have tested 4 different sizes of the pattern tile in the USEGC
studies, and the order of performance with respect to the best accuracy
was 4 × 4 pixel template N 10 × 10 pixel template N 8 × 8 pixel
template N 6 × 6 pixel template. Although the 4 × 4 pixel template
has the best performance in both the u- and v-components, the
increasing template size does not always lead to the increase of er-
rors. For example, the second best performance corresponds to the
10 × 10 pixel template instead of the 6 × 6 or 8 × 8 one, which has
made the impacts of the template size more complicated. As far as
the documented studies are reviewed, there is no a unique answer
with regard to the optimal selection of the template size, which is
more likely to be region-dependent and associated with the quality of
source images. Working with hourly overlap data is one important
reason why these small pattern tiles can work well with the retrieval
of currents. In the present study, we use the 4 × 4 pixel pattern tile in
the USEGC tests if not otherwise specified.

5.2. On the production capacity of velocity vectors

In Fig. 11, we compare two groups of ocean color products their
vector production capacities by counting the total number of valid
velocity vectors resulting from the same sort of MCC implementation.
The production capacity quantitatively measures the volume of vectors
that can be extracted from the imagery data of a specific ocean color
product. Usually the more valid vectors can a color product obtain, the
more suited this product is to derive the currents for the estimation of
surface advection. This capacity is primarily determined by the volume
of useful information and the detailed features of spatial gradients in
the imagery of ocean colors. The products in Fig. 11a are mostly the
same to those previously mentioned in Fig. 9, including At(551),
Bb(551), C(551), Chl, Kd(490), Zeu_lee, Rrs(551) and salinity. Evidently
the ocean color imagery of the Bb(551), C(551) and Zeu_lee ismost capa-
ble of producing theMCC vectors. Each of the three trends follows fairly
closely the other two. The order of performances, however, is subject to
the threshold value specified for the minimum requirement of MCC
coefficients. For example, if we set a lower expectation of the MCC
currents such as kσ ≤ 0.7, the Zeu_lee provides the best production
capacity of valid vectors, while if we increase the cutoff correlation
level to kσ = 0.8–0.9, the leading performance will switch to the
Bb(551). Also, the increasing value of kσ results in the fewer valid
vectors in all cases. The two biological ocean color products, namely,
the At(551) and Chl, present very similar trends of the vector produc-
tion. The surface salinity product, which represents the dissolved salt
contents in the surface water, exhibits a very limited capability of deriv-
ing the currents. The velocityfield extracted from the surface salinity has
more bad vectors than other derived currents especially near the coasts
where rivers enter the ocean. Overall, the ocean color products with
more influence of scattering and suspended particles are capable of pro-
ducing more MCC vectors than those heavily influenced by biological
processes.

As far as the Rrs(λ) in multiple bands are concerned, the strongest
signals are obtained when the waveband is located near 551 nm and
thus Rrs(551) has the best vector production capacity among the five
ocean color products of Rrs(λ) (λ = 410, 443, 486, 551, 671 nm, as
presented in Fig. 11b). The features of the Rrs are determined by the opti-
cal properties of the water and its dissolved and particulate constituents.
The five products with differentwavebands express how the light in each
of the several wavebands is reflected from the sea surface depending on



Fig. 9. Toppanels show theRMS errors in the (a) u-component and (b) v-component ofmultipleMCC velocity products derived from several different color products of theVIIRS satellite aswell
as themodel currents of the 1/12° Navy's operational global Hybrid Coordinate OceanModel (HYCOM). Bottom panels present the RMS errors in the (c) u-component and (d) v-component of
Bb(551), Rrs(551) derived currents and their joint product that is loaded with only the inter-product similarities between the Bb(551) derived currents and the Rrs(551) derived currents.
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the concentration of sediments in the ocean. Specifically, the reflectance
level is associated with a group of optically active components such as
phytoplankton pigments (including Chl), organic andmineral suspended
particulate matter, and colored dissolved organic matter (CDOM). The
increasing Chl usually causes higher reflectance across the visible and
near-infrared spectrum, while the impacts of CDOM on the reflectance
are case dependent in coastal waters. Fig. 11b is obtained in the area
outside of the Chesapeake Bay, where the Chl values are mostly in the
level of ~1.0 mg m−3 but no larger than 5.0 mg m−3 and the Rrs spectra
have a quite strong peak at 551 nm because of the minimal phytoplank-
ton absorption. The strong signals enabled the Rrs(551) color product to
yield the largest quantity of velocity vectors. By examining the slopes of
curves in Fig. 11b, the vector productivities of Rrs(551) and Rrs(671)
decrease much less with the increase of kσ compared to the other three,
indicating that large percentages of the signals of Rrs(551) and Rrs(671)
are closely associated with the movement of water masses and the
cross-correlation resulting from these signals are consistently high. By
contrast, however, most of the signals in the products of Rrs(410),
Rrs(443) and Rrs(486) result in low levels of cross-correlation, showing
Fig. 10.RMS errors in theMCC currents derived from the imagery of (a) Bb(551) and (b) Chl. The
of 10-pixel and 18-pixel, respectively.
less capabilities of establishing strong agreement between the advective
flow and the pattern shifts of ocean colors.

6. Combination of multiple currents

As mentioned in the previous sections, the MCC current products
derived from different ocean color products may carry similarities
across the different currents and the inter-product similarities them-
selves could represent the surface advection more accurately than
each single piece out of the multiple derived velocity fields. However,
a joint product composed of only the inter-product similarities quanti-
tatively has much less valid vectors than the individual MCC products
because most of vectors are denied by the filtering criteria of Δ|U| and
Δθ as described in Section 5.1. Also, because such a joint product is actu-
ally a subset collected from the multiple individual products, it usually
has a reduced coverage of the vectors in space and thus has limited
practical use. On the other hand, since the gradient distributions have
strong impacts on the performance of MCC currents and the different
ocean color imagery may have their own large gradients distributed at
solid line and dashed line trends are corresponding to amaximumaxial searching distance



Fig. 11. Comparison of the numbers of valid vectors in the MCC currents resulting from different ocean color products in the group of (a) At(551), Bb(551), C(551), Chl, Kd(490), Zeu_lee,
Rrs(551), salinity, and (b) Rrs(410), Rrs(443), Rrs(486), Rrs(551), Rrs(671).
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different locations in the image space, we can thereby combine the
multiple MCC products with similarities without enabling the filters of
Δ|U| and Δθ. That is to say, we may mathematically build one current
product from several individually retrieved MCC products by keeping
both their inter-product similarities and differences. Below we will
discuss the methods for such a combination of multiple MCC products
so that an increased total spatial coverage may be obtained for the
vector array.

An image derived product by MCC is mathematically a two-
dimensional matrix of vectors distributed on the pixels within the
entire overlapped area of the sequential images. Vectors are not deter-
mined if the pixels are on the lands or the levels of cross-correlation
fall below the threshold kσ. Every retrieved vector has its own cross-
correlation coefficient representing a degree of confidence and a quan-
titativemeasure of howwell the patternmatchup is correlated between
two time-lapsed patterns. Based on these correlation coefficients, we
propose a weighted simple model to merge multiple image-derived
current products. Assume that we have N (N≥ 2) products to combine.
On a specified pixel (i, j), there are correspondingly N vectors, each of
(a)

(c)

0.5 (m/s)

0.5 (m/s)

Fig. 12. Individual looks of multiple MCC currents retrieved from the VIIRS satellite images of (
products are merged by Eq. (4) to obtain the currents as shown in panel (c), which has an incr
panel (a) or (b).
which is fromone of theNproducts andhas a cross-correlation coefficient
ki,j
n (i=1, 2, 3,…, i-dimension; j=1, 2, 3,…, j-dimension; n=1, 2, 3,…,
N). Note that the N vectors on the pixel (i, j) may contain some invalid
vectors. To exclude the contribution of those invalid vectors,we introduce
the “effective” cross-correlation coefficient ci,jn , which is defined as,

cni; j ¼
kni; j;

0;

kni; j ≥ kσ
� �
kni; j b kσ

� �
8<
: : ð3Þ

Based on ci,j
n , the combined velocity on the pixel (i, j) is then calculated

by,

U ¼
XN
n¼1

cni; j � Un
i; j

� �
=
XN
n¼1

cni; j
� �

; ð4Þ

where Ui,j
n is the vector provided by the nth velocity product for the pixel

(i, j). An example for merging multiple MCC currents with the above
method is given in Fig. 12. The MCC currents derived from the Chl and
0.5 (m/s)(b)

a) Chl and (b) Rrs(551) during 18:09–19:51 UTC on May 7th, 2013. The two derived MCC
eased total spatial coverage of vectors compared to each of the individual vector arrays in
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Rrs(551) imagery are shown in Fig. 12a and b, respectively. Both the Chl
and Rrs(551) products are provided by the VIIRS orbital overlaps in the
Northern Gulf of Mexico. The vector coverages of their derived currents
are clearly different from each other. The Rrs(551) has strong signals
near the shore of the Louisiana–Mississippi shelf and therefore has plenty
of vectors retrieved in this area. The Chl has its strongest signals further
off the shore and extended approximately to 86°W. The combining
procedure collects the contributions of both participants and ensembles
them into a single flow field as shown in Fig. 12c. The joint product
constructed from theMCC currents of Bb(551) andRrs(551),which corre-
sponds to the bold solid lines in Fig. 9c and d, is also resulting from this
method but additionally filtered by the constraints of Δ|U| b 0.3 m s−1

and Δθ b 50° between the two vector arrays.
Other than the simplemodel described above, efforts are also under-

way to blend together themultiple flow fields by using the flow decom-
position and reconstruction procedure proposed by Chu, Ivanov,
Margolina, Korzhova, and Melnichenko (2003a,b). Based on two scalar
potentials identified as toroidal and poloidal, it decomposes the
scatteredly distributed velocities into a spectral representation integrat-
ed with a group of velocity basis functions, some constant coefficients,
and a spectrally varying parameter κ associated with the homogeneous
open boundary conditions. In our on-going studies, one choice of
estimating the open boundary condition is to use the boundary velocity
values from the Navy's HYCOM operational model. In contrast to the
one described in Eqs. (3) and (4), this procedure is a more general one
that may further be extended to combine the image-derived currents
with any other independently available currents such as the HFRadar
velocity observations or the ocean model generated velocity products
within the shared domain. The combination of the image-derived
currents and the HFRadar currents would greatly extend the coverage
of the coastal observation system without additionally deploying
expensive instruments. In general, the procedure for merging multiple
currents provides a vigorous platform to collect credits from different
ocean colors or different algorithms, and the idea is somewhat similar
to the conventional ensemble method in statistics. The merging of mul-
tiple current products can improve the results by allowing diversity and
more flexibility in their representation of the near-surface advection.

7. Concluding remarks

Sequential satellite ocean color images on hourly scales are used to
extract the near-surface currents by the MCC algorithm. We not only
demonstrate the retrieval of currents from the geostationary satellite
ocean color products but also present for the first time that the overlap
of sensor swath between the VIIRS sequential orbits can be used to
estimate the near-surface advection. The retrieval calculations are
validated in several test cases of the BioCast experiment and the
image-derived products are evaluatedwith respect to theHFRadarmea-
surements in the USEGC. The RMS errors in our best derived currents
from the VIIRS ocean color overlaps are less than 0.17 m s−1 in the eval-
uation area outside of the Chesapeake Bay. The most accurately derived
currents are from the imagery of Rrs(551), Bb(551) and C(551). The
image sequences of Bb(551) and Zeu_lee are capable of yielding the larg-
est quantities of velocity vectors. It is clearly evident that the errors in our
top-performingMCC currents from ocean color products areway smaller
than those in the model generated currents provided by the 1/12° global
HYCOM data assimilative experiment. Multiple derived currents from
different ocean colors are cross compared to learn the differences domi-
nated by individual bio-optical properties and the similarities that are
more likely to be linked with the near-surface advection. The subset
currents that are assembled with only the inter-product similarities
collected between different MCC derived currents may present reduced
errors compared to each of the individual products. Errors and bad
vectors may be reduced by smoothing the source images and applying
several types of filters during the post-processing. Attempts are also
made to combinemultiple image-derived products to increase the spatial
coverage of velocity vectors. In some coastal waters where the velocity
observations are limited, the image-derived currents can significantly
increase our knowledge of the near-surface circulation and support vari-
ous operational activities. Similar to the HFRadar products, the currents
derived from ocean colors may also contribute to the data assimilation
in ocean circulation models, the studies of coastal ecosystems, the near
real-time ship navigation and adaptive sampling, as well as the search-
and-rescue operations. Given that the satellite-based remote-sensing is
beingused increasingly for regional-scale assessments of optically related
characteristics in coastal waters, it may be expected that the ocean color
imagery derived surface currents would play a more significant role in
many of the coastal activities in the future.
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