J. Paige Buchanan, Ph. D.

Associate Professor, Department of Chemistry and Biochemistry


Regardless of the discipline, all scientists agree that materials may exhibit very different properties at the nanoscale than those seen in the bulk material. For example, optical, magnetic, and electrical properties are sensitive to size effects, and when used as catalysts, nanoparticles have the ultimate in surface to volume ratio. Our group's research efforts traverse the boundaries among nanomaterials, organic chemistry, and polymer science, with the goal of realizing, supporting, and in many cases boosting the unique properties offered by these intriguing materials. This research platform has led to successful projects using nanomaterials as (1) additives in stimuli-responsive, multi-functional films and coatings, (2) nano-dopants for conducting and magnetically responsive polymers, and as (3) architectural subunits of biologically inspired materials to address areas of military and civilian concern, e.g. chem-bio defense applications.

Just as important as characterizing the exceptional chemical, physical, electronic, and magnetic properties of these unique materials is understanding their often unusual chemistry, photochemistry, and relative reactivity in chemical reactions, such as in functionalization chemistries to modify particle solubility and enable secondary surface chemistry. Deterring aggregation and subsequent precipitation and the incorporation of these materials into nano-structured polymer composites has been a significant focus of recent work, with an emphasis on developing new methodologies. Our research program is designed to address these critical questions using a balance of modern synthetic and analytical techniques. Due to the multi-disciplinary nature of our research, it is also highly collaborative, and our group has active collaborations nationwide in academics, industry, and government labs.

1. “Investigation of the precipitation behavior of asphaltenes in the presence of naphthenic acids using light scattering and molecular modeling techniques,” Heaps, D.T.; Madasu, P.K.; Magers, D. H.; Buchanan, J.P., Energy and Fuels, 2012, 26 (3), pp 1862–1869

2. “Preparation of novel hydrolyzing urethane modified thiol-ene networks,” Mackey, N.M.; Bridget, S.C.; Wynne, J.H.; Buchanan, J.P., Polymers, 2011, 3(4), 1849-1865

3. "Synthesis and development of a multifunctional self-decontaminating polyurethane coating," Wynne, J.H.; Fulmer, P.A.; McCluskey, D.M.; Mackey, N.M.; Buchanan, J.P., ACS Applied Materials & Interfaces, 2011, 3 (6), 2005–2011

4. "Poly (perfluoroalkylation) of metallic nitride fullerenes reveals addition-pattern guidelines: synthesis and characterization of a family of Sc3N@C80(CF3)n (n=2-16) and their radical anions," Shustova, N.B.; Peryshkov, D.V.; Kuvychko, I.V.; Chen, Y-S.; Mackey, M.A.; Coumbe, C.E.; Heaps, D.T.; Confait, B.S.; Heine, T.; Phillips (Buchanan), J.P.; Stevenson, S.; Dunsch, L.; Popov, A.A.; Strauss, S.H.; Boltalina, O.V., J. Am. Chem. Soc., 2011, 133 (8), 2672–2690

5. “Removing organic nitrogen compounds from middle distillate fuels with a catalyst used as a filtering media,” Bauserman, J.W.; Mushrush, G.W.; Willauer, H.; Wynne, J.H.; Phillips (Buchanan), J.P.; Buckley, J.L.; Williams, F.W. Petroleum Science and Technology, 2010, 28, 1761–1769

6. “A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4O3@C80Ih,” Mercado, B.Q.; Olmstead, M.M.; Beavers, C.M.; Easterling, M.L.; Stevenson, S.; Mackey, M.A.; Coumbe, C.E.; Phillips, J.D.; Phillips (Buchanan), J.P.; Poblet, J.M.; Balch, A.L. Chemical Communications, 2010, 46, 279–281

7. “Redox-tuning endohedral fullerene spin states: from the dication to the trianion radical of Sc3N@C80(CF3)2 in five reversible single-electron steps,” Popov, A.A.; Shustova, N. B.; Svitova, A. L.; Mackey, M.A.; Coumbe, C.E.; Phillips (Buchanan), J.P.; Stevenson, S.; Strauss, S.H.; Boltalina, O.V.; Dunsch, L. Chemistry, European Journal, 2010, 16, 4721–4724

8. “Selective complexation and reactivity of metallic nitride and oxometalllic fullerenes with lewis acids and use as an effective purification method,” Stevenson, S.; Mackey, M. A.; Pickens, J.E.; Stuart, M.A.; Confait, B.S.; Phillips (Buchanan), J.P., Inorganic Chemistry, 2009, 48, 11685–11690

9. “Preferential encapsulation and stability of La3N cluster in 80 atom cages: experimental synthesis and computational investigation of La3N@C79N,”Stevenson, S.; Coumbe, C.E.; Mackey, M.A.; Confait, B.S.; Phillips (Buchanan), J.P.; Dorn, H.C; Ling, Y.; Zhang, Y. Journal of American Chemical Society, 2009, 131, 17780–17782

10. “Physical and chemical modifications of thiol-ene networks to control activation energy of enthalpy relaxation,” Shin, J.; Nazarenko, S.; Phillips (Buchanan), J.P.; Hoyle, C.E., Polymer, 2009, 50, 6281–6286

11. “Sc3N@(C80-Ih(7))(CF3)14 and Sc3N@C80-Ih(7))(CF3)16. Endohedral metallofullerene derivatives with exohedral addends on four and eight triple-hexagon junctions. Does the Sc3N cluster control the addition pattern or vice versa?,” Shustova, N.B.; Chen, Y.-S.; Mackey, M.A.; Coumbe, C.E.; Phillips (Buchanan), J.P.; Stevenson, S.; Popov, A.A.; Boltalina, O. V.; Strauss, S.H., J. Am. Chem. Soc., 2009, 131, 17630–17637

12. “Evidence for singlet oxygen generation and biocidal activity in photoresponsive metallic nitride fullerene-polymer adhesive films,” McCluskey, D.M.; Smith, T.N.; Madasu, P.K.; Coumbe, C.E.; Mackey, M.A.; Fulmer, P.A.; Wynne, J.H.; Stevenson, S.; Phillips (Buchanan), J.P., ACS Applied Materials & Interfaces, 2009, 1(4), 882–887

13. “Conversion of nanomaterial waste soot to recycled Sc2O3 feedstock for the synthesis of metallic nitride fullerenes,” Stevenson S.; Coumbe C.E.; Thompson M.C.; Coumbe H.L.; Phillips (Buchanan) J.P.; Buckley J.L.; Wynne J.H., Ind. Eng. Chem. Res., 2008, 47, 2096–2099

14. “A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. synthesis, isolation, and structural characterization of Sc4(µ3-O)2@Ih-C80,” Stevenson S.; Mackey M.A.; Stuart M.A.; Phillips (Buchanan) J.P.; Easterling M.L.; Chancellor C.J.; Olmstead M.M.; Balch A.L., J. Am. Chem. Soc. 2008, 130, 11844–11845

15. “Hybrid siloxane epoxy coatings containing quaternary ammonium moieties,” Pant, R.R.; Buckley, J.L.; Fulmer, P.A.; Wynne, J.H.; McCluskey, D.M.; Phillips (Buchanan), J.P., J. Appl. Polym. Sci., 2008, 110, 3080–3086

16. “Dispersion of gold nanoparticles in UV-cured, thiol-ene films by precomplexation of gold-thiol,” Phillips (Buchanan), J.P.; Mackey, N.M.; Confait, B.S.; Heaps, D.T.; Deng, X.; Todd, M.L.; Stevenson, S.; Zhou, H.; Hoyle, C.E., Chemistry of Materials, 2008, 20, 5240–5245

17. “A reinvestigation of the electrochemical behavior of Sc3N@C80,” Plonska-Brzezinska, M.E.; Athans, A.J.; Phillips (Buchanan), J.P.; Stevenson, S.; Echegoyen, L., J. Electroanal. Chem., 2008, 614, 171–174

18. “Preparation and evaluation of non-ionic amphiphilic phenolic biocides in urethane hydrogels,” Wynne, J.H.; Pant, R.R.; Jones-Meehan, J.M. and Phillips (Buchanan), J.P., J. Appl. Polym. Sci., 2008, 107 (4), 2089–2094

19. “Reducing hazardous material and environmental impact through recycling of scandium nanomaterial waste,” Wynne, J.H.; Buckley, J.L.; Coumbe, C.E.; Phillips (Buchanan), J.P. and Stevenson, S., J. Environ. Sci. Health., Part A, 2008, 43 (4), 357–360

20. “Singlet oxygen generation and adhesive loss in stimuli-responsive, fullerene-polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives,” Phillips (Buchanan), J.P.; Deng, X.; Todd, M.; Stevenson, S.; Zhou, H.; Hoyle, C.E., J. Appl. Polym. Sci., 2008, 109, 2895–2904

21. “Chemically adjusting plasma temperature, energy and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes,” Stevenson, S.; Thompson, M.C.; Coumbe, H.L.; Mackey, M.A.; Coumbe, C.E.; Phillips (Buchanan), J.P., J. Am. Chem. Soc., 2007, 129 (51), 16257–16262