Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio

Patrick G. Stegmann a,∗, Bingqiang Sun b, Jiachen Ding b, Ping Yang b, Xiaodong Zhang c

a Joint Center for Satellite Data Assimilation, NOAA Center for Weather and Climate Prediction, 5830 University Research Ct, 20740 College Park, MD, USA
b Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, 77840 College Station, TX, USA
c Department of Earth System Science and Policy, University of North Dakota, 58202 Grand Forks, ND, USA

A R T I C L E I N F O
Article history:
Received 20 August 2018
Revised 6 December 2018
Accepted 6 December 2018
Available online 11 December 2018

Keywords:
Monte Carlo
Radiative transfer
Ocean optics
Phytoplankton
Lidar
Net primary production
Remote sensing

A B S T R A C T
Propagation of a lidar beam in a coupled atmosphere-ocean model consisting of multiple atmospheric and upper oceanic layers and a rough ocean surface is studied by using a vectorized Monte Carlo radiative transfer solver optimized specifically for lidar-based remote sensing applications. The effects of assumed phytoplankton morphology variations and its vertical distribution on the lidar attenuated backscatter and depolarization ratio are studied. In this study, a phytoplankton particle is assumed to be a sphere, a sphere with a core, or a randomly distorted hexahedron with or without a core. The single-scattering properties of the nonspherical/inhomogeneous particles are computed using appropriate state-of-the-art light-scattering computational capabilities. Vertical variation of the phytoplankton distribution is derived explicitly using a PAR (photosynthetically active radiation) limited carbon biomass balance equation that is subsequently coupled with the Monte Carlo solver.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Phytoplankton context
Phytoplankton in the oceans accounts for approximately half of the Earth’s primary production [1]. Monitoring and assessing the phytoplankton concentration in the sunlit oceans is critical to understanding global carbon cycles [2]. Remotely sensed spectral reflectance observed by, for example, a spaceborne sensor, can provide an estimate of the algal content in the upper layer of the water column [3]. For global carbon cycle or biogeochemical studies involving primary production, such satellite-based observational information about the column-integrated near-surface phytoplankton concentration is insufficient, and must be extended downward to include the biomass vertical distribution [4]. Complementary to passive ocean color measurements, space-based active Light Detection and Ranging (lidar) measurements can be used to effectively retrieve the vertical distribution of water constituents.

Observations by the CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization) instrument [5] provides an unprecedented opportunity to accurately measure phytoplankton properties on a global scale. Retrieval of phytoplankton properties using CALIOP data has only recently been demonstrated by Churnside et al. [6] and Behrenfeld et al. (2013) [7]. Since then, lidar has drawn further interest as a tool to quantify phytoplankton due to both its global availability and its vertical resolution capability in contrast to passive imaging instruments (e.g. [8]). Schulien et al. [9] show that vertically resolved measurements of phytoplankton biomass and the underwater light field are crucial for accurate measurements of column-integrated phytoplankton net primary production (NPP). To accurately interpret the lidar signal requires a thorough understanding of the measurement process itself, which, in turn, includes the propagation of the lidar beam and the single-scattering properties of phytoplankton. Recent progress in radiative transfer simulation based on the Monte Carlo technique [10] and in light scattering computational capabilities associated with phytoplankton [11] allow us to investigate the sensitivities of lidar measurements to vertical variability in phytoplankton biomass. In particular, the present study is aimed at quantifying the effects of phytoplankton morphology assumptions and phytoplankton population vertical profiles in an oceanic column on lidar attenuated backscatter and depolarization ratio signals.

This paper is organized as follows. Section 2 describes the Monte Carlo radiative transfer solver used in this study, and also explains the mechanism for treating the ocean-atmosphere interface explicitly, and describes the model setup in terms of the boundary conditions and the decomposition of the computational domain for the radiative transfer solver. Section 3 specifies the

https://doi.org/10.1016/j.jqsrt.2018.12.009
0022-4073/© 2018 Elsevier Ltd. All rights reserved.
computational domain in detail, including the solution of the vertically-resolved phytoplankton NPP model in conjunction with the selected phytoplankton morphologies and relevant light scattering computations. Section 4 presents a sensitivity study of the variations of the model parameters. Section 5 concludes this study by summarizing its findings.

2. Polarized monte carlo radiative transfer code for lidar applications

2.1. Theoretical background

To compute the attenuated backscatter and depolarization ratio measured by a space based lidar instrument the stationary monochromatic vector radiative transfer equation (RTE) is solved (see [12,13] for details and fundamental assumptions involved in the derivation of the RTE from first principles):

\[
(\omega \cdot \nabla) \vec{I}(\vec{x}, \omega) = -b_{\text{ext}}(\vec{x}) \cdot \vec{I}(\vec{x}, \omega) + b_{\text{scatt}}(\vec{x}) \int_{S^{2}} \mathbf{P}(\omega \cdot \omega') \cdot \vec{I}(\vec{x}, \omega') \, d\omega',
\]

(1)

where \(\omega\) is the 3D unit direction vector, \(\vec{x}\) the position vector in 3D Euclidean space, \(b_{\text{ext}}\) the extinction coefficient, \(b_{\text{scatt}}(\vec{x})\) the scattering coefficient, \(S^{2}\) the unit sphere, \(\mathbf{P}(\omega \cdot \omega')\) the phase matrix, \(\omega|\omega'\) the unit incident/scattered directional vector, and \(\vec{I}(\vec{x}, \omega)\) the vector \(4 \times 1\) Stokes vector. It should be noted that if the transient dynamics of the lidar laser pulse are of interest, the fully time-dependent RTE should be solved using such methods as e.g. applied in [14]. Furthermore Eq. (1) requires the assumption that the host medium is nonabsorbing, which is justified for the visible band but not in the infrared. In this case, both the radiative transfer calculations and the single-scattering computations need to be modified according to [15,16]. Eq. (1) does not contain sources and the boundary conditions are given by an absorbing lower boundary in the ocean and the lidar laser beam at the top of the atmosphere (TOA):

\[
F_{\text{TOA}}(\vec{x}, \omega) = \begin{pmatrix} I_{0} \\ Q_{0} \\ 0 \\ 0 \end{pmatrix} \cdot \delta(\omega_{-}) \cdot \delta(\omega_{+}),
\]

(2)

where \(\delta(\omega_{\pm})\) is the Dirac delta function for the divergence angle of the linearly polarized lidar beam of the lidar instrument. Integrating Eq. (1) along a constant direction \(\omega\) leads to the following integral equation for the Stokes vector:

\[
\vec{I}(\vec{x}, \omega) = \int_{0}^{\infty} \exp\left(-\int_{\omega}^{\infty} b_{\text{ext}}(\vec{x}_{u}) \, dv\right) b_{\text{scatt}}(\vec{x}_{u}) \int_{S^{2}} \mathbf{P}(\omega \cdot \omega') \cdot \vec{I}(\vec{x}_{u}, \omega') \, d\omega' \, dv,
\]

(3)

where \(\vec{x}_{u} = \vec{x} - u \cdot \omega\). Eq. (3) is a Fredholm integral equation of the second kind with the exponential factor being the so-called transport kernel and the phase matrix kernel. The high-dimensional integral in Eq. (3) can be computed using Monte Carlo integration [17] and thus an expectation value for \(\vec{I}(\vec{x}, \omega')\) can be estimated. Eq. (3) motivates the use of the Monte Carlo method on purely mathematical grounds without recourse to the troublesome concept of the photon corpuscle.

2.2. Computational domain

A model setup is schematically illustrated in Fig. 1. The coupled atmosphere-ocean system is modeled as a layered column with the sea surface as an infinitely thin specular interface at the vertical Cartesian coordinate \(z_{\text{atmos.}}\). Scenarios involving atmospheric scattering layers, such as clouds or aerosol layers are only addressed in this paper in order to validate the Monte Carlo code, but not for the sensitivity studies involving phytoplankton. Ocean layers may contain multiple plankton layers with the only requirement that layers cannot overlap. Each layer is completely defined by geometrical top and bottom heights and a set of appropriate single-scattering properties for the desired type of scattering particles. Molecular scattering is explicitly included in both the atmosphere and ocean. The space-based lidar is placed at TOA and has a given laser beam divergence angle and sensor aperture angle. The laser beam divergence in particular is explicitly considered in the sampling of the boundary condition Eq. (2), and the sensor aperture is explicitly taken into consideration in the computation of the expectation value of Eq. (3) via the variance reduction technique discussed in the next subsection. The lidar beam propagates downward through the scattering layers. The lidar receiver receives the scattered light, depending on the off-nadir angle of the beam and the specular reflection from the ocean surface. It is important to emphasize, that the full 3D RTE is solved in each calculation. However, due to the layered nature of the model setup only a pseudo-1D solution is feasible under the condition that the and terrestrial curvature effects are neglected because of the layered nature of the model setup.

2.3. Monte Carlo solution and variance reduction technique

The specific Monte Carlo approach used in this study is a method optimized for lidar applications was originally published in [18] for the scalar case and later extended to the fully polarized case [10]. The Monte Carlo algorithm is fully described in detail in [10]. However, this study extends the original algorithm to a coupled atmosphere-ocean system, because the original algorithm is only suitable only for atmospheric applications involving scattering by atmospheric particles, such as clouds and aerosols. The modifications are:

- Accounting for specular reflection and refraction of radiation at the ocean interface in the Monte Carlo integration process.
- Accounting for specular refraction at the ocean interface in the variance reduction technique.
- Explicit treatment of (molecular) Rayleigh scattering in both atmosphere and ocean.
While counterintuitive at first glance, the representations of the ocean surface in the first and second modification are different. Globally the Monte Carlo algorithm used in this study can be divided into conventional iterative forward Monte Carlo ray tracing, where the free path and scattering direction are sampled on an alternating basis, and the additional variance reduction step. The variance reduction technique used in this study, as well as in the previous studies [10,18], is referred to as the analytic fraction trace [sic], which, in essence is the same as the local estimate method reported in [19,20]. Basically, the expected value of the Stokes vector measured by the lidar instrument is computed from the contributions of all Monte Carlo paths that are scattered directly into the sensor at each collision event (scattering and intersecting the ocean interface for the present problem). After the collision event, the expected value of the sensor signal is increased by the contribution of the directly scattered Stokes vector, and the Monte Carlo path is diminished by the corresponding amount.

In the conventional Monte Carlo ray tracing technique, two possible methods exist to treat the ocean interface and the necessary specular reflection and refraction of the light rays. The first method is conventional recursive ray tracing, where each ray is split up into a reflected and refracted ray that is then recursively traced onward (see e.g. [21] for an early reference). The second approach is to extend the Monte Carlo philosophy to the refraction process as well, and let each Monte Carlo path refract or reflect based on statistical sampling, such that the Fresnel equations are fulfilled in the limit of a large number of light rays incident on the interface. In this study, the second approach was selected due to its considerably simpler implementation. The necessary criteria for the statistical approach are given by Mobley in [22]. For polarized light, the polarized reflectances are defined as follows:

\[
\rho_\perp = \left(\frac{n_i \cos (\theta_i) - n_o \cos (\theta_o)}{n_i \cos (\theta_i) + n_o \cos (\theta_o)} \right)^2 \tag{4a}
\]

\[
\rho_\parallel = \left(\frac{n_i \cos (\theta_i) - n_o \cos (\theta_o)}{n_i \cos (\theta_i) + n_o \cos (\theta_o)} \right)^2 \tag{4b}
\]

\[
\rho (\theta_i, \theta_o) = \frac{\rho_\perp + \rho_\parallel}{2} \tag{4c}
\]

where subscripts i and r stand for incident and transmitted properties and the variables \(\theta \) and n are angles and refractive indices respectively. After drawing a uniformly distributed random number \(q \) on the interval [0, 1], the condition for a light ray associated with \(q \) to be reflected can be written as \(q \leq \rho (\theta_i, \theta_r) \), based on Eq. (4). In the complementary case the light ray is counted as transmitted. The angle of refraction \(\theta_r \) is determined from Snell's law and the normal vector of the ocean surface. For practical calculations the form given in [18,22] is used. The refractive index of sea water was chosen as \(n = 1.333 \). Under perfectly calm conditions the ocean surface normal points directly upwards in the positive Cartesian z-direction. To simulate a realistic rough ocean interface, the widely used Cox-Munk model [23] is applied in this study. The sampling of a random normal vector resulting from a rough windblown ocean surface with Cox-Munk statistics is performed in the same way as was done in [24] for the case of roughened ice crystals. The contribution of the wave height to the ocean interface height \(z_{\text{ocean}} \) is assumed to be small and has been neglected in the current model. Other possible alternatives that would provide increased realism rely on generating an ensemble of ocean surface realizations based on the Fourier transform technique discussed by Mobley in [25] or by directly solving the shallow water equations for a suitable forcing ([26] provides uncertainties as well). However, for the purposes of this study, the Cox-Munk model is sufficient, as the influence of the ocean surface roughness is not the primary focus of this investigation and as shown in Table 1 and Fig. 10 of [25], the agreement between the FFT and Cox-Munk model is close.

Considering the ocean interface in the analytic fraction trace variance reduction mechanism is a subtler issue compared to its treatment in Monte Carlo ray tracing. First of all, the variance reduction technique remains unaffected as long as the collision takes place above the ocean surface. If this is not the case, the semi-analytic estimate of the lidar signal given in [10,18] needs to be multiplied by the transmittance matrix of the ocean surface, as the Fresnel refraction diminishes the Stokes vector contribution further:

\[
\tilde{E} = \tilde{T} (\mathbf{x}, \omega) \cdot \tilde{\sigma} \cdot \Delta \Omega_{\text{dish}} \cdot \exp \left(\frac{b_{\text{ext}} \cdot \Delta d}{\cos (\theta_{\text{scatter}})} \right) \cdot T_S (\theta_i, \theta_o), \tag{5}
\]

where \(\tilde{E} \) is the contribution to the expectation value of the measurement from an individual collision event, \(\tilde{\sigma} \) is the single scattering albedo of the scattering medium, \(\Delta \Omega_{\text{dish}} \) is the aperture angle of the lidar sensor, \(\Delta d \) is the geometrical distance between the scattering event and the detector, \(\theta_{\text{scatter}} \) is the angle between the direction of the light ray before the collision event and the direction towards the lidar aperture cone, and \(T_S (\theta_i, \theta_o) \in \mathbb{R}^{4 \times 4} \) is the Fresnel transmissivity matrix of the ocean surface \(S \) with elements \(T_q \) shown in Figs. 3 and 4. As pointed out by Kattawar [27] and Mobley [25], the proper transmissivity matrix to be used in Monte Carlo calculations is the transmissivity matrix for irradiance. This contrasts with the transmissivity matrix for radiance, where the beam of light is considered to have a finite cross-section, which changes upon refraction, as illustrated in Fig. 2.

The difference in the matrix elements is illustrated in Figs. 3 and 4 together with the difference in the reflectivity matrix elements. The proper transmissivity matrix used for Eq. (5) is given in [27,28]. The transmissivity matrix elements as a function of incidence angle used in this study are shown in Fig. 3 in solid lines.

3. Description of phytoplankton and coupled atmosphere-ocean model

3.1. Atmospheric model

An atmospheric description has also been included in each Monte Carlo radiative transfer calculation. The Rayleigh scattering
Table 1
Scalar bulk scattering properties of phytoplankton morphology set relevant to the Monte Carlo radiative transfer calculations.

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Spherical</th>
<th>Spherical w/ inclusion</th>
<th>Hexahedral w/ tilted facets</th>
<th>Hexahedral with inclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinction efficiency Q_{ext}</td>
<td>2.2581463</td>
<td>1.7048497</td>
<td>0.5154075</td>
<td>0.52472971</td>
</tr>
<tr>
<td>Single-scattering albedo $\omega_{Rayleigh}$</td>
<td>0.8647596</td>
<td>0.8720722</td>
<td>0.87761955</td>
<td>0.86081396</td>
</tr>
</tbody>
</table>

Fig. 3. Comparison of reflectivity and transmissivity matrix elements of an ocean-atmosphere interface for radiance and irradiance. The values of the refractivity curves in orange color are used in Eq. (5). Light ray is leaving the ocean and entering the atmosphere.

Fig. 4. Comparison of reflectivity and transmissivity matrix elements of an ocean-atmosphere interface for radiance and irradiance. Light ray is leaving the atmosphere and entering the ocean.

Optical thickness is relatively large at lidar wavelengths 355 nm and 532 nm, and the algorithms necessary for considering an inhomogeneous plankton profile allow the explicit treatment of Rayleigh scattering from the overlying atmospheric column with little extra effort. The Rayleigh scattering extinction profile is calculated based on the Atmospheric Attenuation Model, 1964 [29]. Fig. 5 shows the obtained mass density of air, which is linearly proportional to the Rayleigh extinction coefficient, in conjunction with an example discretization of the coefficient profile for the layers varying with height. The necessary data, including density profile, molecular mass relative to carbon 12, and Rayleigh attenuation coefficient of air at 532 nm are given in [29,30].

The Müller matrix for Rayleigh scattering used in the Monte Carlo calculations has been taken from [31] and its elements are
depicted in Fig. 6. In practice, only the lowest and thus densest three layers of the atmosphere are used.

3.2. Vertically resolved phytoplankton distribution model

In order to synthesize vertically inhomogeneous profiles of the phytoplankton concentration, several possible approaches have been developed and it is a priori not clear, which one is the most appropriate for the purpose at hand. One possible approach is based on a reaction-diffusion-advection equation [32–35] that describes the phytoplankton population balance as a function of space and time. Based on the review [36] by Westberry and Behrenfeld, the empirical depth-resolved carbon-based model by Westberry et al. [37] has been chosen, however, as it is more suited to remote sensing applications and the approach of using a reaction-diffusion-advection equation is unrecognized in the phytoplankton remote sensing community itself. The simple model proposed in [37] predicts the vertically resolved NPP profile based on the carbon biomass $C(z)$ of the phytoplankton as a function of the ocean depth z:

$$C(z) = C_{z=0} \cdot \left(\frac{\mu(z)}{R} \right) \quad \text{if} \quad R \leq \mu(z)$$

$$C(z) = C_{z=0} \quad \text{if} \quad R > \mu(z)$$ \hspace{1cm} (6)

where $C_{z=0} = 10.5 \text{ mg C} \cdot \text{m}^{-3}$ is the phytoplankton carbon biomass density at the ocean surface $z=0$, $R=0.1 \text{d}^{-1}$ is the background loss rate parameter, and $\mu(z)$ is the phytoplankton growth rate in units of $[\text{d}^{-1}]$. If not otherwise mentioned, parameter values and notation have been taken directly from [37]. Inside the mixed layer the carbon biomass is assumed to stay constant as well. Below the mixed layer depth (MLD), the phytoplankton NPP is governed by the light-limited environment and biological photoacclimation processes, as described in [37]. Further details on the computation of $C(z)$ and $\mu(z)$ are given in [37], with the exception of the PAR distribution, whose computation in the context of this work is explained in more detail in the following. For the NPP model of [37] a simple Beer-Lambert attenuation process of the PAR in units of $[\text{mol} \cdot \text{m}^{-2}\text{d}^{-1}]$ by the phytoplankton is proposed, which is a common assumption for such a model [38]:

$$\text{PAR}(z) = \int_{400}^{700} E_d(0, \lambda) \cdot e^{-d \kappa_d(\lambda)} \, d\lambda.$$ \hspace{1cm} (7)
where $E_\text{g}(0,\lambda)$ is the spectral irradiance at the ocean surface, λ the wavelength in [nm] and $K_d(\lambda)$ is the spectral diffuse attenuation in [m$^{-1}$]. Outside the context of phytoplankton optics it is an interesting albeit so far inconsequential coincidence that Eq. (7) is formally equivalent to a partition function for a classical continuous system in statistical mechanics, or through Wick rotation [39] to a path integral [40], where $E_\text{g}(0,\lambda)$ is the initial wave function and $\int_0^\infty K_d(\lambda) \, dz$ is the Euclidean action.

It is beyond the scope of this work to perform radiative transfer calculations to sample $E_\text{g}(0,\lambda)$ under different atmospheric conditions and thus Planck’s law at 5800 K [41] over the desired spectral range shown in Fig. 7 has been chosen as the PAR source, assuming the earth’s atmosphere to be sufficiently transparent over the 400–700 nm wavelength range. In order to match the PAR units used in [37], the Planck function needs to be divided by the energy of individual photons at the given wavelength and should be multiplied by the ocean surface transmissivity at normal incidence to approximately account for the specular reflection of the water surface.

As in [37], the model for the spectral attenuation $K_d(\lambda)$ has been taken from the work of Morel and Maritorena [42]. Here the spectral attenuation is represented as the sum of the attenuation due to water and the attenuation due to biological components:

$$K_d(\lambda) = K_w(\lambda) + K_{\text{bio}}(\lambda).$$

Retrieved data for $K_w(\lambda)$ are given directly in [42] and plotted in Fig. 8. Attenuation resulting from dissolved organic matter is calculated as a function of the chlorophyll concentration Chl:

$$K_{\text{bio}}(\lambda) = \chi(\lambda) \cdot \text{Chl}^{e(\lambda)},$$

where the values for the scaling factor $\chi(\lambda)$ and the exponent $e(\lambda)$ have again been retrieved from [42] and plotted in Fig. 8. In order to read the parameter values from [42] for further processing quickly and without errors, the optical character recognition method developed in Ref. [43] was used again to great effect. As described in [37], photoacclimation leads to a complex relationship between the chlorophyll concentration Chl(\lambda) and the phytoplankton carbon biomass C(z), which in turn depends on PAR(z). This makes it necessary to iteratively solve for the desired vertically resolved C(z) profile. A sample profile of PAR(z) based on Eq. (7) for a constant Chl(z) = 0.1 mg Chl · m$^{-3}$ distribution (i.e. without photoacclimation) is shown in Fig. 9.

For a mixed layer depth of $z_{\text{MLD}} = 83$ m (indicative of tropical and subtropical waters) Eq. (6) has been solved along the lines of the procedure outlined in [37,42] and the result is shown in Fig. 10. As can be seen, the phytoplankton carbon biomass remains constant in the mixing layer and slightly below z_{MLD}. At greater ocean depths the carbon biomass distribution declines rapidly due to the limited phytoplankton growth rate as a consequence of the PAR attenuation. The Fortran source code used to compute the profile in Fig. 10 is available as supplemental material to this publication. Global mixed layer depth data for further analysis is available e.g. from the Ocean Productivity website of Oregon State University [http://www.science.oregonstate.edu/ocean/productivity/mld.html]. A global analysis however is beyond the scope of this study. The influence of a nutrient limited environment has likewise been neglected.

For the Monte Carlo calculations themselves, the profile in Fig. 10 has been down-sampled and discretized in terms of layers, as illustrated in Fig. 4 for the case of the atmosphere.

3.3 Phytoplankton single-scattering properties

From the perspective of electromagnetic scattering, phytoplankton are generally characterized as optically thin particles with small indices of refraction relative to the surrounding medium (water), while the size parameter of individual particles can become very large (in relation to other light scattering particles) and many phytoplankton morphologies exist, some of which are not necessarily convex [44]. A number of techniques have been developed to cope with the non-spherical morphologies and large size parameters, and to benefit from the low refractive index contrast. Specifically mentioned are the anomalous diffraction for spherical scatterers, as discussed by van de Hulst in [45], the many-body iterative T-matrix (MBIT) method by Sun et al. [46] for chain-like particles, and the implementation of Schiff’s approximation by Charon et al. [47] for large particles. Due to the low refractive index gradient, the Discrete Dipole Approximation (DDA) method calculations can also be carried out at relatively large size parameters [48]. For the purposes of this study the sensitivity of the lidar attenuated backscatter and depolarization ratio to the following phytoplankton morphology models will be estimated:

- Spheres
- Spheres with Spherical inclusions
- Hexahedra with randomly tilted facets
- Hexahedra with randomly tilted facets and hexahedral inclusions

Consequently, the single-scattering properties of these particles must be computed as an input to the Monte Carlo radiative transfer calculations. Other possible phytoplankton shape models of particular interest to the oceanographic community are of the spheroidal type [49], but have not been considered here. As in the precursor study from [10], the computation of the bulk scattering properties of all particle morphologies is based on a Junge-type distribution with exponent -4. This size distribution is commonly applied to phytoplankton [11,22,50]. The use of Junge type particle size distributions for phytoplankton has been criticized by Risovic, who argues in favor of a segmented Gamma type distribution [51], however a sensitivity study with respect to the size distribution is beyond the scope of this project and corresponding study is already available in [52]. An illustration of particle size distributions for phytoplankton is given in Fig. 11.

The complex effective refractive index relative to the surrounding medium of all particle morphologies for this study at the lidar wavelength $\lambda = 532$ nm is selected as $m = 1.05 + i \cdot 0.002$ from [53].
Only one lidar wavelength is considered in the present study, excluding color ratio measurements from scrutiny.

For a long time, spherical particles, such as the rendering on the right of Fig. 12, have been considered as a first-order approximation in light scattering problems, and this is also the case for phytoplankton (see Ref. [54]). This is due to the early availability of the analytic Lorenz-Mie solution to the scattering problem from Ref. [55] and corresponding efficient solver algorithms for its computation, such as BHMIE from Ref. [56]. Consequently, this type of particle has been included as a baseline reference for the single-scattering properties in this work. Scalar properties, such as the extinction efficiency, are summarized in Table 1 at the end of the section, together with the single-scattering properties of the other morphologies. The scattering phase matrix elements are shown in Fig. 13 in comparison to the elements of a spherical particle with a spherical inclusion discussed below. The bulk scattering properties have been computed based on a size range from 0.001 to 10 μm with 50 logarithmically spaced abscissae.

Spherical particles with spherical inclusions allow additional freedom in the sense that they allow the modelling of organelles inside the phytoplankton, such as chloroplasts. Phytoplankton chlorophyll molecules (light-harvesting pigment-protein complex) are located in the chloroplasts. These structures absorb the incoming radiation and thus alter the cells’ single-scattering properties of cells. This is illustrated in Fig. 12. To ensure comparability with the Mie case, both homogeneous and heterogeneous plankton morphologies should have the same effective refractive index. Specifically, the Bruggeman effective medium approach [57] is selected,
that is, effective refractive index m and component indices m_i need to fulfil the following relation for a two-component mixture:

$$\sum_{i=1,2} f_i \cdot \frac{m_i - m}{m_i + 2 - m} = 0, \quad (10)$$

where f_i is the volume fraction for the ith component substance. Eq. (10) can be solved analytically. For a volume fraction of 80% bulk to 20% chloroplast, the refractive indices are:

- Bulk: $m_{\text{bulk}} = 1.02 + i \cdot 0.0009$
- Chloroplast: $m_{\text{inclusion}} = 1.175992 + i \cdot 0.006839$

This specific volume ratio was chosen mainly due to the computational limitations of the light scattering codes used in this study. To illustrate the difference between a particle with a single effective index of refraction and a particle with an explicit inclusion, a rendering of the two cases is shown in Fig. 12. The coloration of the images is for illustration purposes only, and does not correspond to the real absorption spectrum of phytoplankton. Again, the bulk scattering properties have been computed based on a size range from 0.001 to 10 μm with 50 logarithmically spaced abscissae.
The single-scattering properties of the spherical particle with spherical inclusion have been computed using the semi-analytic Multiple-Sphere T-Matrix Method by Mackowski and Mishchenko [58]. The phase matrix is shown in Fig. 13 in comparison to the homogeneous case and the scalar properties are listed in Table 1.

It should be noted that the backscattering part of the Lorenz-Mie phase function in Fig. 13 is similar in magnitude to the values given in 3.10, column 1 of [22]. The MSTM phase function in the backscattering region however is larger by a factor of 3. A similar situation can be observed for the phase functions of the hexahedral particles in Fig. 16, suggesting that this is a consistent effect caused by the presence of an inclusion inside a host particle.

Hexahedra with tilted facets have been shown in [11] to be a suitable morphology for representing the single-scattering properties of phytoplankton. An ensemble of hexahedra with randomly tilted facets provides an approximation to the stochastic variation of phytoplankton shapes encountered in real lidar measurements. In the same way as in [11], the single-scattering properties of an ensemble similar to the one shown in Fig. 14 have been computed at 532 nm through a combination of the Invariant Imbedding T-Matrix Method (II-TM) from [59,60] and the Physical-Geometric Optics Hybrid Method (PGOH) from [61]. This combination allows to extend the range of computable sizes to 100 μm.

The resulting phase matrix is shown in Fig. 16, again in comparison to the case with a single inclusion, and the scalar properties are given in Table 1. An important issue to consider when computing the single-scattering properties of the hexahedral particles is that Eq. (1) requires the assumption that the scattering particles are not only randomly oriented, but also have a plane of symmetry or consist of an equal mixture of particle and mirror-particle. A rigorous analysis of this topic can be found in [62]. To fulfil these requirements, all hexahedra ensembles are defined using an equal number of particles and mirror-particles in the present analysis.

It is obvious from Fig. 16 that the main difference with respect to the spherical model lies in the polarization elements of the phase matrix and the phase function alone is very similar in shape, as is also the case for the sphere with a spherical inclusion.

Hexahedra with tilted facets and hexahedral inclusions represent a matryoshka doll version of the homogeneous hexahedron, as illustrated in Fig. 15. In the present case, the hexahedra with tilted facets contain a smaller hexahedron with tilted facets as an inclusion.

The single-scattering properties of the hexahedron with inclusions are computed in the same way as for the homogeneous hexa...
ahedra ensemble and the parameters, such as the volume fraction, are identical to the spherical inclusion case, such that both homogeneous and inhomogeneous hexahedra share the same effective index of refraction. The resulting phase matrix is shown in Fig. 16 in comparison with the homogeneous case and the scalar single-scattering properties are listed in Table 1.

As can be seen from the comparison in Fig. 16, the difference of the phase matrix elements is much less pronounced than for the spherical cases in Fig. 13. The only noticeably different element of the phase matrix is P_{43}. Consequently, it is more difficult to distinguish the homogeneous hexahedron from the hexahedron with inclusion by optical means than in the cases of spheres with or without inclusions.

The single-scattering albedo of all morphologies is roughly equal (Table 1). As discussed in [11], the extinction efficiency of the hexahedra is much lower than that of the spherical models.

4. Monte Carlo radiative transfer results

This section discusses the results obtained from the Monte Carlo sensitivity study under variation of different assumptions of the lidar measurement process. Sections 4.1 and 4.2 first validate the convergent solutions by of the Monte Carlo solver.

4.1. Monte Carlo convergence

To ensure the convergence of the coupled Monte Carlo RT solver, a convergence check has been performed for the case of a homogeneous plankton layer of 20 m thickness using the hexahedral morphology without inclusions. The results of the convergence study are shown in Fig. 17. The total attenuated backscatter (TAB) of the plankton layer has been chosen as a scalar convergence indicator for the expected measurement value, as the integrated AB of the atmosphere above the ocean converges much more quickly. The off-nadir angle of the calculation is 1 °, the laser divergence angle 10^{-4} degrees, the lidar height 705 km and the source Stokes vector linearly polarized, as in Eq. (2).

Fig. 17 indicates that convergence is achieved after 10^5 Monte Carlo trajectories, but all further calculations in this section are carried out using 4×10^8 Monte Carlo trajectories. This is facilitated by the efficiency of the variance reduction technique.

4.2. Monte Carlo validation

After a condition for the convergence of the Monte Carlo code has been determined, the validity of the scattering results of the code is checked against analytical results. For the validation, in Fig. 18 the Monte Carlo code was compared against an analytical relationship given by Eq. (4) of [63], and the solution of the lidar code in the single scattering case in Fig. 19. The comparison was carried out for a single cloud layer with an effective radius of 10 μm. As can be seen, the Monte Carlo results follow the analytic relationships to an acceptable degree.

4.3. Sensitivity to lidar off-nadir angle

In the practical analysis of lidar signals from oceans, off-nadir data may be selected to avoid the specular reflection from the ocean surface, or to obtain multi-angle observations. For this reason, Monte Carlo calculations for a single, 10 m phytoplankton layer of hexahedral particles have been performed, investigating zero, 0.5, and 1 ° off-nadir angle. While there are no substantial differences in the attenuated backscatter for these small angles, there is a noticeable reduction in the depolarization ratio (Fig. 20).

4.4. Sensitivity to ocean surface roughness

The preceding test case was likewise used to study the effect of increasing ocean surface roughness. Using the Cox-Munk spectrum, wind speeds of $U_{\text{wind}} = 3$ and 10 m s$^{-1}$ have been investigated for a zero degree off-nadir angle. Following [23], the standard deviation σ_θ of the Gaussian probability distribution from which the azimuth angle θ of the ocean surface normal vector is sampled is given by the following expression:

$$\sigma_\theta = (0.003 + 0.00512 \cdot U_{\text{wind}}).$$

This leads to a standard deviation of 0.0286 and 0.0542 for 3 and 10 m s$^{-1}$ windspeed, respectively. There is only a slight decrease of the attenuated backscatter near the ocean surface with increased wind speed, but no appreciable difference in the depolarization ratio (Fig. 21).

4.5. Sensitivity to phytoplankton morphology

The sensitivity study of lidar attenuated backscatter and linear depolarization ratio is carried out with all four morphology types discussed above. The same test geometry as in the previous cases has been kept. There is a slight dependence of the attenuated backscatter (Fig. 22) on the phytoplankton morphology, and a somewhat stronger dependence for the depolarization ratio shown in Fig. 23. However, the difference between spherical
Fig. 17. Convergence of the total attenuated backscatter of the homogeneous test plankton layer as a function of Monte Carlo photons.

Fig. 18. Comparison between simulated and analytical η-δ relations.

Fig. 19. Comparison between simulated Monte-Carlo and analytical layer integrated attenuated single backscatter at various optical thickness.

Fig. 20. Linear depolarization ratio over ocean depth. Off-nadir angles are shown in blue (0°), orange (0.5°), and green (1°).
Fig. 21. Attenuated backscatter for 5 (blue) and 10 (orange) m s\(^{-1}\) windspeeds at the ocean surface.

Fig. 22. Attenuated backscatter vs. ocean depth for four different phytoplankton morphologies. Note that spherical particles have a slightly higher AB than nonspherical particles.

Fig. 23. Linear depolarization ratio vs ocean depth for four different phytoplankton morphologies. Note the consistent offset between spherical and non-spherical particles.
and non-spherical particle is more pronounced than to the respective cases with inclusions, which adequately justifies the effective medium approach.

4.6. Sensitivity to phytoplankton vertical profile

Lastly, the influence of an inhomogeneous vertical profile of the plankton is investigated. For this case, the profile in Fig. 10 has been selected and discretized into layers, each of which is 30 m thick. The hexahedra with tilted facets have been selected as a scattering morphology and all results have been computed with \(6 \cdot 10^6\) initial Monte Carlo trajectories. As can be seen from the layer-integrated attenuated backscatter results as a function of the ocean depth shown in Fig. 24, a strong influence of the phytoplankton density profile is indicated. No such dependence is found for the depolarization ratio. For comparison, the normalized phytoplankton carbon biomass density taken from Fig. 10, which serves as a proxy for the total phytoplankton density in the present case is also shown in Fig. 24. However, the attenuated backscatter result is also negatively impacted by layer discretization artifacts and the rapidly declining optical depth of the individual layers makes it difficult to achieve convergence in the Monte Carlo calculations. A reduced peak of the attenuated backscatter or undershoot at each layer interface is clearly visible in Fig. 24. To investigate the discretization issue further, another attenuated backscatter result with a layer resolution that is twice as high (i.e. 15 m layer depth) is also shown in Fig. 24. As such, future investigations of radiative transfer involving phytoplankton density profiles

Fig. 24. Layer-integrated attenuated Backscatter for the inhomogeneous phytoplankton profile shown in Fig. 7.

Fig. 25. Layer-integrated attenuated Backscatter for a homogeneous phytoplankton profile in contrast to Fig. 22.
should require a smooth variation of the optical properties. It is also clear that for the current model setup increasing the spatial resolution of the layers leads to a lower total optical depth in regions where the phytoplankton carbon biomass density is below its maximum (i.e. in light or nutrient limited growth regions). This also reduces the attenuated backscatter signal, as can be seen clearly in Fig. 24 in the difference between the 30 m and 15 m layer discretization in the light limited region. There is a clear correspondence to the sharply decreasing extinction coefficient of the phytoplankton layers shown in Fig. 10. Consequently, these results provide an indication that lidar measurements are quite sensitive towards a variation of phytoplankton concentration in the vertical direction.

A comparison of the results for an inhomogeneous case in Fig. 24 to the results for a homogeneous case in Fig. 25 reveals that the mixed layer depth can be clearly identified from the phytoplankton attenuated backscatter signal under the current model assumptions and that the decline of the phytoplankton carbon biomass density below the mixed layer depth leads to a significantly lower attenuated backscatter signal that strongly correlates with the spatial distribution of the carbon density. The discontinuity in the TAB signal in the transition zone from the mixed layer to the light limited region must again be considered an artefact of the Monte Carlo layer discretization and in reality a discontinuity in the first derivative of the TAB signal (i.e. a kink), and not the TAB signal itself, to be expected.

5. Conclusion

In this study, a 3D polarized Monte Carlo RTE solver for lidar applications involving a coupled atmosphere-ocean system was developed in conjunction with a semi-implicit solver for the time-dependent population balance equation of buoyant phytoplankton. Furthermore, the single-scattering properties of different phytoplankton model morphologies were computed. This allows an in-depth sensitivity study of spaceborne lidar attenuated backscatter and depolarization ratio measurements that facilitate studies of the global accounting and taxonomy of phytoplankton biomass and NPP in the oceans. The present sensitivity study indicates that both particle morphology and phytoplankton vertical density variation have strong impacts on lidar measurement. Lidar polarization is identified as a useful parameter for investigating phytoplankton morphology, however, it is not expected to be strongly influenced by morphological details, such as inclusions, which is in contrast to the measured phase matrices of Volten et al. (1998) [64]. Possible explanations for this discrepancy are: 1) Volten specifically addresses gas vacuoles, and not chlorophyll; 2) the idealized conditions of the numerical experiment conducted in this manuscript; 3) the exact matching of the effective refractive index of the particle with and without inclusion in the numerical experiments, which is not possible for measurements in nature. The better investigate the significant effect of phytoplankton vertical profiles, it is necessary to improve discretized RT simulations. In particular Invariant-Imbedding RT solvers [65,66] are considered more efficient when it comes to smooth vertical variations in the underly- ing atmospheric and oceanic profiles.

Acknowledgements

This study was supported by the National Science Foundation (NSF) (AGS-1338440, OCE-1459180) and partially supported by the endowment funds associated with the David Bullock Harris Chair (02-51223110000) in Geosciences at the Texas A&M University. A substantial amount of the calculations for this study were carried out at the Texas A&M University Supercomputing Facilities, and the help and assistance of the facility staff is gratefully acknowledged.

The authors would like to thank Dr. George Kattawar for sharing his considerable experience in Monte Carlo radiative transfer calculations of oceans.

Appendix A

The depth-resolved phytoplankton NPP code is available as a github repository at https://github.com/PStegmann/Westberry_08_model and is licensed under the GPL v3.0.

References